• Title/Summary/Keyword: Anthrax toxin

Search Result 12, Processing Time 0.024 seconds

Molecular cloning, Expression and purification of Anthrax toxin from Bacillus anthracis

  • Yoon, Moon-Young
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.323-325
    • /
    • 2002
  • Bacillus Anthracis is the causative agent of anthrax. The major virulence factors are a poly-D glutamic acid capsule and three-protein component exotoxin, which is collectively known as anthrax toxin, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). These three proteins individually have no known toxic activities, but in combination with PA form two toxins (lethal toxin and edema toxin), causing different pathogenic responses in animals and cultured cells. However, it remains to be elucidated for pathogenic mechanism of anthrax toxin. In this study, we constructed toxin component in bacterial overexpression system and purified the native toxin from Bacillus anthracis delta sterne F32 using FPLC system. Recombinant toxin showed high homogeneity and rapid purification processes. Also, this recombinant toxin was comparable to B. anthracis native toxin in terms of cytotoxic effects on cultured cell lines.

  • PDF

Modulation of Interleukin Production in Anthrax Lethal Toxin-treated Macrophages by Melatonin and Dehydroepiandrosterone

  • Shin, Sung-Ho;Hur, Gyeung-Haeng;Yeon, Kyu-Baek;Kim, Yun-Bae;Park, Kyung-Jin;Park, Young-Min;Lee, Woo-Sung;Cho, Bong-Huey;Kim, Won-Yong;Chung, Sang-In;Choi, Chul-Soon
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.463-468
    • /
    • 2000
  • Anthrax lethal toxin, which consists of two separate protein, protective antigen (83 KDa) and lethal factor (85 KDa) is responsible for major symptoms and death from systemic infection of Bacillus anthracis. High concentrations of this toxin are cytolytic to macrophages, whereas sublytic concentrations of lethal toxin induce these cells to produce interleukin $1{\beta}$ ($IL-1{\beta}$). It is proposed that melatonin and dehydroepiandrosterone (DHEA) may play an important role in modifying immune dysfunction. In this study, we investigated whether or not melatonin and DHEA could prevent $IL-1{\beta}$ production that is induced by anthrax lethal toxin in mouse peritoneal macrophages. Treatment of melatonin or DHEA alone, as well as together, prevented the production of $IL-1{\beta}$ caused by anthrax lethal toxin. We found that melatonin at a concentration of $10^{-6}-10^{-7}$ M inhibits $IL-1{\beta}$ production induced by anthrax lethal toxin. As expect, treatment of DHEA at a concentration $10^{-6}-10^{-7}$ M also suppressed production of $IL-1{\beta}$ by lethal toxin stimulated macrophages. The results of these studies suggest that melatonin and DHEA, immunomodulators, may have an important role in reducing the increase of cytokine production in anthrax lethal toxin-treated macrophages.

  • PDF

Screening of Peptides Bound to Anthrax Protective Antigen by Phage Display

  • Kim, Joung-Mok;Park, Hye-Yeon;Choi, Kyoung-Jae;Jung, Hoe-Il;Han, Sung-Hwan;Lee, Jae-Seong;Park, Joon-Shik;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1784-1790
    • /
    • 2006
  • Bacillus anthracis is a causative agent of anthrax. Anthrax toxins are composed of a protective antigen (PA), lethal factor (LF), and edema factor (EF), in which the PA is a central mediator for the delivery of the two enzymatic moieties LF and EF. Therefore, the PA has been an attractive target in the prevention and vaccinization for anthrax toxin. Recently, it has been reported that the molecule consisting of multiple copies of PA-binding peptide, covalently linked to a flexible polymer backbone, blocked intoxification of anthrax toxin in an animal model. In the present study, we have screened novel diverse peptides that bind to PA with a high affinity (picomolar range) from an M13 peptide display library and characterized the binding regions of the peptides. Our works provide a basis to develop novel potent inhibitors or diagnostic probes with a diverse polyvalence.

Identification of a lead small-molecule inhibitor of anthrax lethal toxin by using fluorescence-based high-throughput screening

  • Wei, Dong;Bu, Zhaoyun;Yu, Ailian;Li, Feng
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.811-815
    • /
    • 2011
  • Inhalational anthrax is caused by B. anthracis, a virulent sporeforming bacterium which secretes anthrax toxins consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease and is the main determinant in the pathogenesis of anthrax. Here we report the identification of a lead small-molecule inhibitor of anthrax lethal factor by screening an available synthetic small-molecule inhibitor library using fluorescence-based high-throughput screening (HTS) approach. Seven small molecules were found to have inhibitory effect against LF activity, among which SM157 had the highest inhibitory activity. All theses small molecule inhibitors inhibited LF in a noncompetitive inhibition mode. SM157 and SM167 are from the same family, both having an identical group complex, which is predicted to insert into S1' pocket of LF. More potent small-molecule inhibitors could be developed by modifying SM157 based on this identical group complex.

Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae (Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현)

  • Hwang Hyehyun;Kim Joungmok;Choi Kyoung-Jae;Chung Hoeil;Han Sung-Hwan;Koo Bon-Sung;Yoon Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Anthrax is an infectious disease caused by the gram-positive bacterium, Bacillus anthracis. Anthrax toxin is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF onto the cytosol. LF is a zinc-dependent metalloprotease, which is a critical virulence factor in cytotoxicity of infected animals. Therefore, it is of interest to develop its potent inhibitors for the neutralization of anthrax toxin. The first step to identify the inhibitors is the development of a rapid, sensitive, and simple assay method with a high-throughput ability. Much efforts have been concentrated on the preparation of powerful assays and on the screening of inhibitors using these system. In the present study, we have tried to construct anthrax lethal factor in yeast expression system to prepare cell-based high-throughput assay system. Here, we have shown the results covering the construction of a new vector system, subcloning of LF gene, and the expression of target gene. Our results are first trial to express LF gene in eukaryote and provide the basic steps in design of cell-based assay system.

Purification and Characterization of Recombinant Anthrax Edema Factor (부종요소 단백질의 정제 및 특성분석 연구)

  • Kim, Yu-Gene
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.710-718
    • /
    • 2011
  • Edema factor(EF) is a portion of anthrax toxin which produces edema when combined with protective antigen. This paper describes about technique for cloning, expression, purification and activity test of EF. Using the E. coli expression system, we could make recombinant EF protein although it's origin is Bacillus anthracis. And also we could culture massively and purify highly pure protein. Finally we confirm a enzyme activity of purified EF to increase intracellular cAMP level. Through establishing this technique, it can be possible to research about EF in depth and apply to expression and purification of many other protein in biology.

Molecular Diversity of pagA Gene from Baciilus anthracis (탄저균 pagA 유전자의 분자적 다양성)

  • 김성주;조기승;최영길;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. The anthrax toxin contains three components, including the protective antigen (PA), which binds to eucaryotic cell surface receptors and mediates the transport of toxins into the cell. In this study, the entire 2,294-nucleotide protective antigen gene (pag) was sequenced from 4 of B. anthracis strains to identify potential variation in the toxin and to further our understanding of B. anthracis evolution in Korea. Sequence alignment of the entire PA gene from 30 strains representative of the four B. anthracis diversity groups revealed mutations. The mutation of B. anthracis BAK are located adjacent to a highly antigenic region crossing the junction between PA domains 3 and 4 shown to be critical to LF binding. The different mutational combinations observed in this study give rise to 11 PA genotypes and 4PA phenotypes. Three-dimensional analysis of all the amino acid changes (Ala to Val) observed in BAK indicated that these changes are not only close sequentially but also very close in three-dimensional space to the antigenic region importan tfor LF binding. Phylogenetic (cladistic) analysis of the pag corresponded with previous strain grouping based on chromosomal variation, suggesting that plasmid evolution in B. anthracis has occurred with little or no horizontal transfer between the different strains.

  • PDF

Proteome Profiling of Murine Macrophages Treated with the Anthrax Lethal Toxin (탄저 치사독소 처리에 의한 생쥐 대식세포의 단백질체 발현 양상 분석)

  • Jung Kyoung-Hwa;Seo Giw-Moon;Kim Sung-Joo;Kim Ji-Chon;Oh Seon-Mi;Oh Kwang-Geun;Chai Young-Gyu
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.262-268
    • /
    • 2005
  • Intoxication of murine macrophages (RAW 264.7) with the anthrax lethal toxin (LeTx 100 ng/ml) results in profound alterations in the host cell gene expression. The role of LeTx in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional polyacrylamide gel electrophoresis to analyze the protein profile of murine macrophages treated with the LeTx, and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the ProFound database. Among the differentially expressed spots, cleaved mitogen-activated protein kinase kinase (Mek1) and glucose-6-phosphate dehydrogenase were increased in the LeTx treated macrophages. Mek1 acts as a negative element in the signal transduction pathway, and G6PD plays the role for the protection of the cells from the hyper-production of active oxygen. Our results suggest that this proteomic approach is a useful tool to study protein expression in intoxicated macrophages and will contribute to the identification of a putative substrate for LeTx.

Production of nitric oxide, interleukin-6 and tumor necrosis factor α from mouse peritoneal macrophages in response to Bacillus anthracis antigens

  • Yoo, Han-sang;Kim, Jae-wook;Cho, Yun-sang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.301-310
    • /
    • 1999
  • Anthrax caused by Bacillus anthracis is one of the most important zoonotic diseases. The bacterium produces several virulence factors. Of the factors, protective antigen (PA) of tripatite toxin has been identified as a central component in the pathogenesis of anthrax. However, precise roles of PA and other cellular components in the reaction with the target cells remain to be elucidated, especially in the initial stage of the disease. Three B anthracis antigens were prepared for investigation; PA, sonicated cellular antigens (S-Ag) and formalin-inactivaed whole cell antigens (W-Ag). PA was purified from culture supernatant of the bacterium using FPLC system with MonoQ. S-Ag and W-Ag were prepared by sonication and formalin inactivation of the cultured cells, respectively. Purity of the antigens was confirmed by SDS-PAGE and Western blot analysis. The roles of these antigens in the production of inflammatory mediators such as NO, IL-6 and $TNF{\alpha}$ from mouse peritoneal macrophages were investigated. PA alone did not induce the production of the inflammatory mediators while the other antigens, S-Ag and W-Ag, did in a dose and time dependent manner. These results suggested that in addition to major virulence factors, other cellular antigens are also involved in the initial stage of the disease by the induction of inflammatory mediators.

  • PDF