• Title/Summary/Keyword: Antenna Commands

Search Result 9, Processing Time 0.024 seconds

Design of Digital Block for LF Antenna Driver (LF 안테나 구동기의 디지털 블록 설계)

  • Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1985-1992
    • /
    • 2011
  • PE(Passive Entry) is an automotive technology which allows a driver to lock and unlock door of vehicle without using smart key buttons personally. PG(Pssive Go) is an automotive technology which offers the ability to start and stop the engine when there is a driver in vehicle with smart key. When these two functions are unified, we call it PEG(Passive Entry/Go). LF(Low Frequency) antenna driver which is one of core technologies in PEG is composed of a digital part which processes commands and an analog part which generates sine waveform. The digital part of antenna driver receives commands from MCU(or ECU), and processes requested commands by MCU, and stores antenna-related driver commands and data on an internal FIFO block. The digital part takes corresponding actions for commands read from FIFO and then transfers modulated LF data to analog part. The analog part generates sine waveform and transmits outside through antenna. The designed digital part for LF antenna driver can acomplish faster LF data transmission than that of conventional product. LF antenna driver can be applicable to the areas such as PEG for automotive and gate opening and closing of building.

A Geometric Compression Method Using Dominant Points for Transmission to LEO Satellites

  • Ko, Kwang Hee;Ahn, Hyo-Sung;Wang, Semyung;Choi, Sujin;Jung, Okchul;Chung, Daewon;Park, Hyungjun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.622-630
    • /
    • 2016
  • In the operation of a low earth orbit satellite, a series of antenna commands are transmitted from a ground station to the satellite within a visibility window (i.e., the time period for which an antenna of the satellite is visible from the station) and executed to control the antenna. The window is a limited resource where all data transmission is carried out. Therefore, minimizing the transmission time for the antenna commands by reducing the data size is necessary in order to provide more time for the transmission of other data. In this paper, we propose a geometric compression method based on B-spline curve fitting using dominant points in order to compactly represent the antenna commands. We transform the problem of command size reduction into a geometric problem that is relatively easier to deal with. The command data are interpreted as points in a 2D space. The geometric properties of the data distribution are considered to determine the optimal parameters for a curve approximating the data with sufficient accuracy. Experimental results demonstrate that the proposed method is superior to conventional methods currently used in practice.

APDE(Antenna Positioning Drive Electronics) Design for MSC (Multi-Spectral Camera)

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.440-443
    • /
    • 2004
  • As a main management unit of MSC, PMU controls the MSC payload operation by issuing commands to other subunit and PMU internal modules. One of these main control functions is to drive the APS(Antenna Pointing System) when APS motion is required. For this purpose, SBC(Single Board Computer) for calculating motor commands and APDE for driving APM(Antenna Pointing Mechanism) by PWM signal operate inside PUM. In this paper, details on APDE design shall be described such as electronic board architecture, primary and redundant design concept, Cross-Strap, FPGA contents and latch-up immune concept, etc., which shall show good practices of electronic board design for space program.

  • PDF

Compensation of a Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Park, Chiyeon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.182-186
    • /
    • 2004
  • This paper describes an advanced compensation for non-linear functions designed to remove steering aberrations from phased array antennas. This system alters the steering command applied to the antenna in a way that the appropriate angle commands are given to the array steering software for the antenna to point to the desired position instead of squinting. Artificial neural networks are used to develop the inverse function necessary to correct the aberration. Also a straightforward antenna steering function is implemented with neural networks for the 9-term polynomials of forward steering function. In all cases the aberration is removed resulting in small RMS angular errors across the operational angle space when the actual antenna position is compared with the desired position. The use of neural network model provides a method of producing a non-linear system that can correct antenna performance and demonstrates the feasibility of generating an inverse steering algorithm.

The Ground Interface Concept of the KOMPSAT-II DLS

  • Lee, Sang-Taek;Lee, Sang-Gyu;Lee, Jong-Tae;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.228-228
    • /
    • 2002
  • The DLS(Data Link System) is located in the PDTS(Payload Data Transmission Subsystem) of KOMPSAT-II, and its main function is to provide communication link with Ground Segment as a space segment. DLS receive the data of MSC, OBC from DCSU(Data Compression Storage Unit) and transmit to the Ground Station by X-Band RF link. DLS is consist of CCU(Channel Coding Unit), QTX(QPSK Transmitter, ASU(Antenna Switch Unit) CCU makes a packet for communication after several kind of data processing such like Ciphering, RS Coding. QTX transmit PDTS data by OQPSK. Modulation. ASU is the unit for reliability of antenna switching. So, DLS's function is consists of ciphering, RS coding, CCSDS packetizing, randomizing, modulation and switching to antenna. These DLS's functions are controlled by PMU(Payload Management Unit). All commands to DLS are sent by PMU and all telemetries of DLS are sent to the PMU. The PMU receives commands from OBC and sends telemetries to the OBC. The OBC communicates with Ground Station by S-Band RF link. This paper presents the on-orbit DLS operation concept through the ground segment.

  • PDF

Performance Test for the SIGMA Communication System

  • Jeong, Seonyeong;Lee, Hyojeong;Lee, Seongwhan;Shin, Jehyuck;Lee, Jungkyu;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.335-344
    • /
    • 2016
  • Scientific CubeSat with Instruments for Global Magnetic Fields and Radiations (SIGMA) is a 3-U size CubeSat that will be operated in low earth orbit (LEO). The SIGMA communication system uses a very high frequency (VHF) band for uplink and an ultra high frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO). For reliable communication, we carried out a laboratory (LAB) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present a communication performance test of SIGMA, a link budget analysis, and a field test process. We also compare the link budget with the field test results of transmitting commands and receiving data.

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

Frequency determination for beam command in rotating phase and frequency scan radar systems (회전 위상-주파수 주사 레이다 시스템의 빔 명령을 위한 주파수 결정)

  • 이민준;박정순;송익호;김광순;장태주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1319-1324
    • /
    • 1998
  • The phase and frequency commands of a ratating radar system that utilizes frequency scanning to steer the beam in the azimuth direction and phase shifters in the elevation direction are derived in terms of the angles of the groung based coordinate system. The antenna type considered is slotted arrays that are easy to construct at such high microwave frequency as the X band. The frequency that has non-linear characteristics as a functio ofthe elevation angle is plotted and the derived frequency equation is aproximated to be a simple form to reduce the calculation time for real time multi-function radar systems. It is shown that the approximated frequency command is in good agreement with the exact one if the range of azimuth scanning is limited by ${\pm}10^{\circ}$.

  • PDF

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.