• Title/Summary/Keyword: Antecedent dry days

Search Result 25, Processing Time 0.022 seconds

Long Term Monitoring of Storm Surface Runoff from Urban Pavement Road in Korea

  • Lee, C.S.;Seo, G.T.;Lee, J.H.;Yoon, Y.S.;You, J.J.;Sin, C.K.
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.184-191
    • /
    • 2008
  • Long term monitoring was conducted to investigate a surface runoff of pollution from urban highway. The monitoring data was collected for 18 rainfall events and was used to correlate pollution load to various parameters, such as rainfall intensity, antecedent dry days and total discharge flow. Runoff coefficient and seasonal variation were also evaluated. The mean runoff coefficient of the highway was 0.823(range; $0.4687{\sim}0.9884$), and wash-off ratio for $COD_{Mn}$ and SS loads was 72.6% and 64.3%, respectively. For the initial rainfall event, the runoff EMC of $COD_{Mn}$ was high in summer and the EMC of SS was high in autumn season. However the seasonal variation of T-N and T-P was not significant. The discharged $COD_{Mn}$-EMC was $147.6\;mg/L{\sim}9.0\;mg/L$ on the generated $COD_{Mn}$-EMC of $98.8\;mg/L{\sim}8.9\;mg/L$. While the generated EMC of SS was in $285.7\;mg/L{\sim}20.0\;mg/L$ and its discharged EMC was in $190.4\;mg/L{\sim}8.0\;mg/L$. EMC of pollutants was not directly related to the first flush rainfall intensity and the antecedent dry days. But the correlation was relatively high between EMC and cumulative runoff flow volume. The trend of EMC was reduced with the cumulative runoff flow volume.

Analysis of pollutant build-up model applied to various urban landuse

  • Choi, Jiyeon;Na, Eunhye;Ryu, Jichul;Kim, Jinsun;Kim, Hongtae;Shin, Dongsuk
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • This study was conducted to analyse the application of pollutant build-up model on various urban landuses and to characterize pollutant build-up on urban areas as a source of stormwater runoff pollution. The monitored data from impervious surfaces in urban areas such as commercial (8 sites), industrial (10 sites), road (8 sites), residential (10 sites), recreational (5 sites) from 2008 to 2016 were used for the analysis of pollutant build-up model. Based on the results, the average runoff coefficients vary from 0.35 to 0.61. In all landuses except recreational landuse, the runoff coefficient is 0.5 or more, which is the highest in the commercial area. Commercial landuse where pollutants occur at the highest EMC in all landuse, and it is considered that NPS management is necessary compared with other landuses. The maximum build-up load for organic matter (BOD) was highest in the commercial area ($4.59g/m^2$), and for particular matter (TSS) in the road area ($5.90g/m^2$) while for nutrient (TN and TP) in the residential area ($0.40g/m^2$, $0.14g/m^2$). The rate constants ranged from 0.1 to 1.3 1/day depending on landuse and pollutant parameters, which means that pollutant accumulation occurs between 1 and 10 days during dry day. It is clear that these build-up curves can generally be classified based on landuse. Antecedent dry day (ADD) is a suitable and reasonable variable for developing pollutant build-up functions. The pollutant build-up curves for different landuse shows that these build-up curves can be generally categorized based on landuse.

Analysis of Nonpoint Source Pollution Runoff from Urban Land Uses in South Korea

  • Rhee, Han-Pil;Yoon, Chun-Gyeong;Lee, Seung-Jae;Choi, Jae-Ho;Son, Yeong-Kwon
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • A long-term nationwide nonpoint-source pollution monitoring program was initiated by the Ministry of Environment Republic of Korea (ME) in 2007. Monitoring devices including rain gauges, flow meters, and automatic samplers were installed in monitoring sites to collect dynamic runoff data in 2008-2009. More than 10 rainfall events with three or more antecedent dry days were monitored per year. More than 10 samples were collected and analyzed per event. So far, five land use types (single family, apartments, education facilities, power plants, and other public facilities) have been monitored 23 to 24 times each. Characterization of the runoff from different land use types will aid unit load estimation in Korea and hopefully in other countries with similar land use. The monitoring results will be reported regularly at national and international levels.

Estimation of Runoff Characteristics of Non-point Pollutant Source by Land Cover Characteristics (토지피복 특성에 따른 비점오염원 유출특성 평가)

  • Lee, Jae-Woon;Yi, Youn-Jeong;Kwon, Hun-Gak;Yoon, Jong-Su;Lee, Chun-Sik;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.977-988
    • /
    • 2012
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas and transportation areas for 2 years(2010~2011year). Effluents were monitored to calculate the Event Mean Concentrations(EMCs) and runoff loads of each pollutant. The pollutant EMCs by volume of stormwater runoff showed the ranges of BOD 0.9~13.6 mg/L, COD 13.7~45.2 mg/L, SS 4.1~236.4 mg/L, T-N 2.123~21.111 mg/L, T-P 0.495~2.214 mg/L in the orchard areas, and was calculated as BOD 2.3~22.5mg/L, COD 4.4~91.1 mg/L, SS 4.3~138.3 mg/L, T-N 0.700~13.500 mg/L, T-P 0.082~1.345 mg/L in the transportation areas. The correlation coefficient of determination in the orchard area was investigated in the order of Total Rainfall(0.81) > Total Runoff(0.76) > Rainfall Intensity(0.56) > Rainfall Duration(0.46) > Antecedent Dry Days(0.27). Also, in the case of the transportation area was investigated in the order of Total Rainfall (0.55) > Total Runoff(0.54) > Rainfall Intensity(0.53) > Rainfall Duration(0.24) > Antecedent Dry Days(0.14). As the result, comparing valuables relating to runoff of non-pollutant source between orchard areas and transportation areas, orchard area($R^2{\geq}0.5$ : X3, X4, X5) was investigated to have more influence of diverse independent valuables compared to the transportation area($R^2{\geq}0.5$ : X3, X4) and the difference of discharge influence factor by the land characteristics appeared apparently.

Reduction Efficiency of the Stormwater Wetland from Animal Feeding-Lot (강우유출수 처리목적 인공습지의 강우시 오염물질 저감특성에 관한 연구)

  • Park, Kisoo;Niu, Siping;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.79-90
    • /
    • 2013
  • Stormwater wetland targeted to treat the rainfall runoff from cow feeding-lot basin has been monitored from May 2010 to November 2011. Reduction efficiency estimated based on 20 rainfall event monitoring was 88%, 54%, 70%, 31%, and 64% for TSS, BOD, $COD_{Cr}$, TN, and TP, respectively. Theoretically, as rainfall depth increases, hydraulic exchange ratio has to be increased. When the exchange ratio approaches to 1 (usually design goal), TSS reduction efficiency was estimated about 55%. Uncertainty in reduction efficiency of the stormwater wetland is normally very high due to the continuous rainfall activity, its magnitude and intensity, antecedent dry days, and other natural variables which can not be controlled by experiment conductors. In this study, predominant affecting variables was found to be hydraulics caused by consecutive rainfall events having different intensity and algal growth during dry days.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations (선행 강우를 고려한 Sentinel-1 SAR 위성영상과 다중선형회귀모형을 활용한 토양수분 산정)

  • Chung, Jeehun;Son, Moobeen;Lee, Yonggwan;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.515-530
    • /
    • 2021
  • This study is to estimate soil moisture (SM) using Sentinel-1A/B C-band SAR (synthetic aperture radar) images and Multiple Linear Regression Model(MLRM) in the Yongdam-Dam watershed of South Korea. Both the Sentinel-1A and -1B images (6 days interval and 10 m resolution) were collected for 5 years from 2015 to 2019. The geometric, radiometric, and noise corrections were performed using the SNAP (SentiNel Application Platform) software and converted to backscattering coefficient of VV and VH polarization. The in-situ SM data measured at 6 locations using TDR were used to validate the estimated SM results. The 5 days antecedent precipitation data were also collected to overcome the estimation difficulty for the vegetated area not reaching the ground. The MLRM modeling was performed using yearly data and seasonal data set, and correlation analysis was performed according to the number of the independent variable. The estimated SM was verified with observed SM using the coefficient of determination (R2) and the root mean square error (RMSE). As a result of SM modeling using only BSC in the grass area, R2 was 0.13 and RMSE was 4.83%. When 5 days of antecedent precipitation data was used, R2 was 0.37 and RMSE was 4.11%. With the use of dry days and seasonal regression equation to reflect the decrease pattern and seasonal variability of SM, the correlation increased significantly with R2 of 0.69 and RMSE of 2.88%.

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.

Hydrologic and Water Quality Responses to Precipitation Extremes in Nakdong River Basin (이상기후변화가 낙동강 유역의 수문·수질요소에 미치는 영향)

  • Jang, Jae Ho;Ahn, Jong Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1081-1091
    • /
    • 2012
  • SWAT model is applied to simulate rainfall-runoff and pollutant loadings in the Nakdong River basin as the condition for extreme droughts and floods. The year 1994 and 2002 are chosen as the drought and flood year, respectively, through the analysis of past rainfall data for 30 years. The simulation results show decreases in both runoff and pollutant loadings for the drought year but increases for the flood year. However, the pollutant loadings on some upper sub-basins increase for drought year due to highly-regulated dam discharge and soil moisture change. Collectively, extreme droughts and floods have negative impacts on water quality, showing elevated SS loadings during wet season and concentrated T-P concentrations during low flow season. The extent of these impacts is highly influenced by antecedent dry days and precipitation patterns.