• 제목/요약/키워드: Antarctic Surface Water

검색결과 26건 처리시간 0.025초

Distribution and Vertical Structures of Water Masses around the Antarctic Continental Margin

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.277-288
    • /
    • 2005
  • Spatial distribution and vertical structures of water masses around the Antarctic continental margin are described using synthesized hydrographic data. Antarctic Surface Water (AASW) over the shelf regime is distinguished from underlying other water masses by the cut-off salinity, varying from approximately 34.35 to 34.45 around Antarctica. Shelf water, characterized by salinity greater than the cut-off salinity and potential temperature less than $-17^{\circ}C$, is observed on the Ross Sea, off George V Land, off Wilkes Land, the Amery Basin, and the Weddell Sea, but in some shelves AASW occupies the entire shelf. Lower Circumpolar Deep Water is present everywhere around the Antarctic oceanic regime and in some places it mixes with Shelf Water, producing Antarctic Slope Front Water (ASFW). ASFW, characterized by potential temperature less than about $0^{\circ}C$ and greater than $-17^{\circ}C$, and salinity greater than the cut-off salinity, is found everywhere around Antarctica except in the Bellingshausen-Amundsen sector. The presence of different water masses over the Antarctic shelves and shelf edges produces mainly three types of water mass stratifications: no significant meridional property gradient in the Bellingshausen and Amundsen Seas, single property gradient where ASFW presents, and a V-shaped front where Shelf Water exists.

Climatological Trend of Sea Water Temperature around the Antarctic Peninsula Waters in the Southern Ocean

  • Lee, Chung-Il;Kim, Sang-Woo;Kim, Dong-Sun;Yoon, Moon-Geun
    • 한국환경과학회지
    • /
    • 제21권2호
    • /
    • pp.125-133
    • /
    • 2012
  • Climatological trend for the period of 1970 to 2009 in sea water temperature around the Antarctic Peninsular waters in the Southern Ocean was investigated. During the period from 1970 to 2009, sea water temperature in the top 500 m water column except 100 m increased at a rate of $0.003-0.011^{\circ}C{\cdot}yr^{-1}$, but at 100 m it decreased at a rate of $-0.003^{\circ}C{\cdot}yr^{-1}$. Although long-term trend is generally warming, there were several periods of sharp changes between 1970 and 2009. Annual mean sea water temperature between surface and 500 m except 100 m decreased from the early of 1970s to the end of 1980s, and then it increased to the end of 2000s. In the entire water column between the surface and 500 m, sea water temperature closely correlated with the El Nino events expressed as the Southern Oscillation Index(SOI), and SOI and sea water temperature have a dominant period of about 3-5 years and decade.

Relative Microalgal Concentration in Prydz Bay, East Antarctica during Late Austral Summer, 2006

  • Mohan, Rahul;Shukla, Sunil Kumar;Anilkumar, N.;Sudhakar, M.;Prakash, Satya;Ramesh, R.
    • ALGAE
    • /
    • 제24권3호
    • /
    • pp.139-147
    • /
    • 2009
  • Microalgae using a submersible fluorescence probe in water column (up to 100 m) were measured during the austral summer of 2006 (February) in Prydz Bay, East Antarctica (triangular-shaped embayment in the Indian sector of Southern Ocean). Concurrently, environmental parameters such as temperature, salinity and nitrogen (nitrate, ammonium, urea) uptake rates were measured. The concentration of phytoplankton is relatively high due to availability of high nutrients and low sea surface temperature. Phytoplankton community is dominated by diatoms whereas cryptophytes are in low concentration. The maximum concentration of total chlorophyll is 14.87 ${\mu}g\;L^{-1}$ and is attributed to upwelled subsurface winter water due to local wind forcing, availability of micro-nutrients and increased attenuation of photosynthetically available radiation (PAR). Concentration of blue-green algae is low compared to that of green algae because of low temperature. Comparatively high concentration of yellow substances is due to the influence of Antarctic melt-water whereas cryptophytes are low due to high salinity and mixed water column. Varied concentrations of phytoplankton at different times of Fluoroprobe measurements suggest that the coastal waters of Prydz Bay are influenced by changing sub-surface water temperature and salinity due to subsurface upwelling induced by local winds as also melting/freezing processes in late summer. The productivity is high in coastal water due to the input of macro as well as micro-nutrients.

Oxygen Isotope Data of Winter Water in the Western Weddell Sea: Preliminary Results

  • Khim, Boo-Keun;Park, Byong-Kwon;Kang, Sung-Ho
    • Journal of the korean society of oceanography
    • /
    • 제33권1-2호
    • /
    • pp.1-7
    • /
    • 1998
  • In the western Weddell Sea, winter mixed layer is characterized by near-freezing temperature and higher salinity due to brine injection through sea-ice formation. This layer becomes Winter Water being capped by warmer and less saline Antarctic Surface Water during the sea-ice melt-ing season. In this study, Winter Water was preliminarily identified by the oxygen isotopic com-positions. The ${\delta}^{18}$O values of Winter Water show the progressively increasing trend from south to north in the study area. It presumably reflects the enhanced mixing with Antarctic Surface Water due to the extent of influence by low S'"0 value of sea-ice/glacier meltwater. Correlations between salinity and 6'"0 values of seawater can be used to more generally characterize Winter Water with a view to identification. However, the prediction on the degree of mixing from these relationships needs more detailed isotope data, although this study allows the oxygen isotopic composition of seawater as a tracer to identify the water mass.

  • PDF

남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화 (Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean)

  • 장양희;김부근;신형철;;;홍창수
    • Ocean and Polar Research
    • /
    • 제30권4호
    • /
    • pp.407-418
    • /
    • 2008
  • Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • 김성중;이방용
    • 지구물리
    • /
    • 제9권4호
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

1998/1999 남극 킹조지섬 마리안소만 표층수에 서식하는 미세조류의 계절적 변동 (Seasonal Variation of Microalgae in the Surface Water of Marian Cove, King George Island, the Antarctic 1998/1999)

  • 강재신;강성호;이진환;최돈원;이상훈
    • 환경생물
    • /
    • 제18권1호
    • /
    • pp.21-31
    • /
    • 2000
  • We investigated seasonal variation of microalgal assemblages, sea water temperature, salinity and suspended solid and the parameters measured daily from January 1998 to October 1999 at a nearshore shallow-water in Marian Cove, Maxwell Bay, King George Island, the Antarctic. Annual mean surface water temperature was -0.3$0^{\circ}C$ and the highest water temperature was 4.53$^{\circ}C$ (22 January 1999) and the lowest water temperature was -2.07$^{\circ}C$ (23 August 1998). Annual mean salinity was 33.38 psu, ranging from 42.80 psu (6 January 1999) to 19.50 psu (6 June 1999). Annual mean suspended solid (SS) during two years was 34.14 mgㆍ1$^{-1}$, ranging from 60.62 mgㆍ1$^{-1}$(7 March 1998) to 12.90 mgㆍ1$^{-1}$ (26 December 1998). Chlorophyll $\alpha$ (Chl $\alpha$) concentrations were measured in order to know seasonal variations of microalgae in the surface seawater. Annual mean of total Chl a concentration was 0.55$\mu\textrm{g}$ㆍ1$^{-1}$, the highest Chl $\alpha$ concentration (12.16$\mu\textrm{g}$ㆍ1$^{-1}$) appeared in 4 October 1998, the lowest Chl $\alpha$ concentration appeared 0.19$\mu\textrm{g}$ㆍ1$^{-1}$, Monthly mean total Chl $\alpha$ concentration was high in October 1998 (1.32$\mu\textrm{g}$ㆍ1$^{-1}$) and low in July on 1998 (0.28$\mu\textrm{g}$ㆍ1$^{-1}$). Annual mean nano-sized Chl $\alpha$ concentration was 0.40$\mu\textrm{g}$ㆍ1$^{-1}$, monthly mean nano -sized Chl $\alpha$ concentration was high in November 1998 (0.90$\mu\textrm{g}$ㆍ1$^{-1}$), and low in July 1999 (0.22$\mu\textrm{g}$ㆍ1$^{-1}$). Annual mean micro-sized Chl $\alpha$ concentration was 0.15$\mu\textrm{g}$ㆍ1$^{-1}$ monthly mean micro-sized Chl $\alpha$ concentration was high in October 1998 (0.81$\mu\textrm{g}$ㆍ1$^{-1}$), and low July 1998, January, February and September 1999 (0.05$\mu\textrm{g}$ㆍ1$^{-1}$). More than 65% of total Chl $\alpha$ was concentrated during spring and summer time between October and March. Microalgal variation appeared to be due to physical factors of seawater in the Antarctic nearshore from 1998 to 1999. The reason why micro-sized Chl $\alpha$ did not increase during austral summer was the bay had been frozen by decrease of water temperature. We think that total microalgal abundance was decreased because the summer microalgal abundance was determined by variation of water temperature during winter season. [Chl $\alpha$ concentration, Microalgal assembalges, Seasonal variation, the Antarctic nearshore].

  • PDF

남빙양 새우의 생태학적 특성 (Some Ecological Aspects of Antarctic Krill, Euphausia superba in the Antarctic Ocean)

  • 이장욱;권정노;김태익;양원석
    • 한국수산과학회지
    • /
    • 제27권2호
    • /
    • pp.183-192
    • /
    • 1994
  • 대서양 남빙양 새우의 주된 분포역은 South George Island, Laurie/Coronation Islands와 Livingston/King George Islands 지역으로 공간적인 구분을 뚜렷이 하였다. 어획 수심은 층에서 150 m층까지 달했고, 10 m층으로 구분한 단위노력당어획량의 수직 분포는 층간에 큰 차이가 없었으나 수심이 깊어 질수록 낮아지는 경향을 보였다. 수온과 단위노력당 어획량의 관계로 부터 남빙양 새우는 주로 $0.8{\sim}l.0^{\circ}C$ 범위에서 높은 밀도를 나타내었다. 남빙양 새우의 암수별 체장 조성은 큰 차이를 보여 숫컷의 비율은 작은 체장에서, 암컷의 비율은 큰 체장에서 각각 높았다. 두흉갑장과 체장관계, 체장과 체중관계가 암수별로 추정되었다. 암수별 성비조성은 숫컷이 $60.3\%$, 암컷이 $39.7\%$로서 유의한 차이를 나타내었다.

  • PDF

남극 남쉐틀랜드군도 주변 해역의 영양염과 식물플랑크톤 생물량 분포 (Distribution of Nutrients and Phytoplankton Biomass in the Area Around the South Shetland Islands, Antarctica)

  • 김동선;강성호;김동엽;이윤호;강영철
    • Ocean and Polar Research
    • /
    • 제23권2호
    • /
    • pp.77-95
    • /
    • 2001
  • 2000년 1월에 남극 남쉐틀랜드군도(South Shetland Islands) 주변해역에서 수심 200 m 까지 수온, 염분, 영양염, 엽록소, 일차생산력 등을 측정하였다. 표층수온은 남쉐틀랜드군도 북쪽 드레이크해협(Drake Passage)에서 높았고 남극반도 북동해역에서 낮았다. 반대로 염분은 드레이크해협에서 낮았고 남극반도쪽으로 갈수록 점차적으로 증가하여 남극반도 북동해역에서 최고 값을 보였다. 표층해수의 영양염 농도는 대체로 드레이크해협에서 낮은 값을 보였고 남쉐틀랜드군도 인접해역에서 높은 값을 보였다. 엽록소 농도는 드레이크해협과 남극반도 인접해역에서 낮았고 킹조오지섬(King George Island) 북쪽해역에서 높았다. 연구해역은 T-S diagram의 특징적인 형태에 따라 4개 해역으로 구분된다; 드레이크해협, 브랜스필드해협 (Bransfield Strait), 혼합 해역(Mixed zone), 웨델해(Weddell Sea) 해역. 이들 4개 해역들은 각각 특징적인 물리, 화학, 생물학적 특성을 보였다. 식물플랑크톤 생물량은 드레이크해협과 웨델해 해역에서 상대적으로 낮았고 브랜스필드해협과 혼합 해역에서 높았다. 웨델해 해역에서 식물플랑크톤 생물량이 낮은 것은 낮은 수온과 수심 200 m 이상의 깊은 표층혼합 때문이라고 생각되고 드레이크해협 해역에서는 높은 동물플랑크톤 포식압과 낮은 철농도 때문인 것으로 생각된다.

  • PDF

남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화 (Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period)

  • 양주연;;최혁;김부근
    • Ocean and Polar Research
    • /
    • 제45권3호
    • /
    • pp.141-153
    • /
    • 2023
  • Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.