• Title/Summary/Keyword: Ant Colony Algorithm

Search Result 127, Processing Time 0.023 seconds

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

Faster pipe auto-routing using improved jump point search

  • Min, Jwa-Geun;Ruy, Won-Sun;Park, Chul Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.596-604
    • /
    • 2020
  • Previous studies on pipe auto-routing algorithms generally used such algorithms as A*, Dijkstra, Genetic Algorithm, Particle Swarm Optimization, and Ant Colony Optimization, to satisfy the relevant constraints of its own field and improve the output quality. On the other hand, this study aimed to significantly improve path-finding speed by applying the Jump Point Search (JPS) algorithm, which requires lower search cost than the abovementioned algorithms, for pipe routing. The existing JPS, however, is limited to two-dimensional spaces and can only find the shortest path. Thus, it requires several improvements to be applied to pipe routing. Pipe routing is performed in a three-dimensional space, and the path of piping must be parallel to the axis to minimize its interference with other facilities. In addition, the number of elbows must be reduced to the maximum from an economic perspective, and preferred spaces in the path must also be included. The existing JPS was improved for the pipe routing problem such that it can consider the above-mentioned problem. The fast path-finding speed of the proposed algorithm was verified by comparing it with the conventional A* algorithm in terms of resolution.

Feature Subset Selection Algorithm based on Entropy (엔트로피를 기반으로 한 특징 집합 선택 알고리즘)

  • 홍석미;안종일;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2004
  • The feature subset selection is used as a preprocessing step of a teaming algorithm. If collected data are irrelevant or redundant information, we can improve the performance of learning by removing these data before creating of the learning model. The feature subset selection can also reduce the search space and the storage requirement. This paper proposed a new feature subset selection algorithm that is using the heuristic function based on entropy to evaluate the performance of the abstracted feature subset and feature selection. The ACS algorithm was used as a search method. We could decrease a size of learning model and unnecessary calculating time by reducing the dimension of the feature that was used for learning.

A Path Planning of Mobile Agents By Ant Colony Optimization (개미집단 최적화에 의한 이동 에이전트의 경로 계획)

  • Kang, Jin-Shig
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • This paper suggests a Path-planning algorithm for mobile agents. While there are a lot of studies on the path-planning for mobile agents, mathematical modeling of complex environment which constrained by spatio-temporally is very difficult and it is impossible to obtain the optimal solutions. In this paper, an optimal path-planning algorithm based on the graphic technique is presented. The working environment is divided into two areas, the one is free movable area and the other is not permissible area in which there exist obstacles and spatio-temporally constrained, and an optimal solution is obtained by using a new algorithm which is based on the well known ACO algorithm.

생체모방 알고리즘 기반 통신 네트워크 기술

  • Choe, Hyeon-Ho;Lee, Jeong-Ryun
    • Information and Communications Magazine
    • /
    • v.29 no.4
    • /
    • pp.62-71
    • /
    • 2012
  • 수십 억년 동안 진화를 거듭해온 지구상의 생명체들은 외부의 제어 없이 독자적으로 단순한 행동 규칙에 따라 기능을 수행하여 주어진 목적의 최적해를 달성한다. 이러한 다양한 생명체의 행동 원리를 모델링하여 만든 알고리즘을 생체모방 알고리즘(Bio-Inspired Algorithm)이라 한다. 생체모방 알고리즘은 다수의 개체가 존재하며, 주변 환경이 동적으로 변하고, 가용 자원의 제약이 주어지며, 이질적인 특성을 갖는 개체들이 분잔 및 자율적으로 움직이는 환경에서 안정성, 확장성, 적응성과 같은 특징을 보여주는데, 이는 통신 네트워크 환경 및 서비스 요구사항과 유사성을 갖는다. 본 논문에서는 대표적인 생체모방 알고리즘으로 통신 및 네트워킹 기술로 사용되는 Ant Colony 알고리즘, Bee 알고리즘, Firefly 알고리즘, Flocking 알고리즘에 대해 살펴보고, 관련 프로젝트 및 연구 동향을 정리한다. 이를 통해 현재의 생체모방 알고리즘의 한계를 극복하고 미래 통신 및 네트워킹 기술이 나아갈 방향을 제시한다.

Design of An Energy-efficient Routing Algorithm based on ACO for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 기반의 ACO 라우팅 알고리즘 설계)

  • Choi, Jae-Won;Jung, Eui-Hyun;Park, Yong-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.621-624
    • /
    • 2006
  • 무선 센서 네트워크는 기존의 무선 통신 기술로는 구현 불가능했던 다양한 응용 기술의 실현을 가능케 할 것으로 기대되고 있다. 이를 위해 제한된 자원의 효율적인 사용을 통한 무선 센서 네트워크의 성능 향상에 대한 연구가 지속되고 있으며 네트워크 계층에 있어서는 에너지 효율적인 라우팅 알고리즘에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 데이터 중심(data-centric) 멀티 홉(multi-hop) 평면 라우팅 알고리즘에 최적화 알고리즘의 하나인 Ant Colony Optimization을 적용한 에너지 효율적인 라우팅 알고리즘을 제안한다. 시뮬레이션 결과, 제안한 알고리즘은 기존의 알고리즘에 비해 데이터 전송 지연 시간을 줄였을 뿐만 아니라, 경로 선택 및 유지에 필요한 제어 메시지 최소화를 통해 에너지 소모를 줄여 데이터 전송량의 증가를 가능케 했다.

  • PDF

Intention-Oriented Itinerary Recommendation Through Bridging Physical Trajectories and Online Social Networks

  • Meng, Xiangxu;Lin, Xinye;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3197-3218
    • /
    • 2012
  • Compared with traditional itinerary planning, intention-oriented itinerary recommendations can provide more flexible activity planning without requiring the user's predetermined destinations and is especially helpful for those in unfamiliar environments. The rank and classification of points of interest (POI) from location-based social networks (LBSN) are used to indicate different user intentions. The mining of vehicles' physical trajectories can provide exact civil traffic information for path planning. This paper proposes a POI category-based itinerary recommendation framework combining physical trajectories with LBSN. Specifically, a Voronoi graph-based GPS trajectory analysis method is utilized to build traffic information networks, and an ant colony algorithm for multi-object optimization is implemented to locate the most appropriate itineraries. We conduct experiments on datasets from the Foursquare and GeoLife projects. A test of users' satisfaction with the recommended items is also performed. Our results show that the satisfaction level reaches an average of 80%.

An ACA-based fuzzy clustering for medical image segmentation (적응적 개미군집 퍼지 클러스터링 기반 의료 영상분할)

  • Yu, Jeong-Min;Jeon, Moon-Gu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.367-368
    • /
    • 2012
  • Possibilistic c-means (PCM) 알고리즘은 fuzzy c-means (FCM) 의 노이즈 민감성을 극복하기 위해 제안 되었다. 하지만, PCM 은 사용되는 시스템 파라미터들의 초기화와 coincident 클러스터링 문제로 인하여 그 성능이 민감하다. 본 논문에서는 이러한 문제점들을 극복하기 위해 개미군집 알고리즘(Ant colony algorithm)을 이용한 퍼지 클러스터링(fuzzy clustering) 알고리즘을 제안한다. 먼저, 개미군집 알고리즘을 통해 PCM 의 클러스터 개수 및 중심 값 파라미터를 최적화 하고, 미리 분류된 화소 정보를 이용하여 PCM 의 coincident 클러스터링 문제를 해결하였다. 제안된 알고리즘의 효율성을 의료 영상 분할 문제에 적용하여 확인하였다.