• 제목/요약/키워드: Anoxic/aerobic Biofilm Reactor

검색결과 13건 처리시간 0.02초

외부탄소원을 사용한 SBBR의 공정 특성 및 질소제거 (Evaluation of SBBR Process Performance Focused on Nitrogen Removal with External Carbon Addition)

  • 한혜정;윤주환
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.566-571
    • /
    • 2006
  • A sequencing batch biofilm reactor (SBBR) operated with a cycle of anaerobic - aerobic - anoxic - aerobic has been evaluated for the nutrient removal characteristics. The sponge-like moving media was filled to about 10% of reactor volume. The sewage was the major substrate while external synthetic carbon substrate was added to the anoxic stage to enhance the nitrogen removal. The operational results indicated that maximum T-N and T-P removal efficiencies were 97% and 94%, respectively were achieved, while COD removal of 92%. The observations of significant nitrogen removal in the first aerobic stage indicated that nitrogen removal behaviour in this SBBR was different to conventional SBR. Although the reasons for aerobic nitrogen removal has speculated to either simultaneous nitrification and denitrification or anoxic denitrification inside of the media, further researches are required to confirm the observation. The specific oxygen uptake rate (SOUR) test with biofilm and suspended growth sludge indicated that biofilm in SBBR played a major role to remove substrates.

준혐기-호기 생물막 공정을 이용한 돈사폐수 처리 (Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process)

  • 임재명;한동준
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거 (Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate)

  • 최혁순
    • 대한환경공학회지
    • /
    • 제35권5호
    • /
    • pp.301-306
    • /
    • 2013
  • 본 연구는 퍼클로레이트($ClO_4{^-}$)와 질산염($NO_3{^-}$)의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막에 의한 연속처리의 적용 가능성을 조사하였다. 생물막 처리공정은 첫 번째 단계로 퍼클로레이트와 질산염의 제거를 위해 무산소생물막반응조를 이용하였고 두 번째 단계로 이화적 퍼클로레이트와 질산염 환원을 위해 사용된 잔류탄소원의 제거를 위해 호기생물막반응조가 도입되었다. 그리고 마지막 단계로 탁도제거를 위해 중공사형 MF막을 적용하였다. 본 연구에서 102 ${\mu}g/L$ $ClO_4{^-}$와 61.8 mg/L $NO_3{^-}$ (14 mg/L $NO_3$-N)가 유입수로 주입되어 퍼클로레이트는 IC 검출농도 이하(5 ${\mu}g/L$ $ClO_4{^-}$)로 제거되었으며 질산염은 최종 처리수의 농도가 4.4 mg/L $NO_3{^-}$ (1 mg/L $NO_3$-N)로 제거되었다. 탄소원으로 사용된 과잉의 179 mg/L 유입 $CH_3COO^-$는 무산소생물막반응조의 유출수에서 117 mg/L, 호기생물막반응조의 유출수에서 11 mg/L로 감소하였다. 3 NTU의 유입 탁도는 무산소/호기생물막반응조의 유출수에서 1.5와 0.3 NTU였으며 최종 MF막의 유출수에서 0.2 NTU였다. 이 결과는 지표수와 지하수에 포함된 저농도 퍼클로레이트와 질산염 오염의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막의 연속처리가 적용될 수 있음을 의미하는 것으로 사료된다.

이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질 (Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

생물막공법에 의한 고농도 유기폐수 처리시 생물막 과부착 제어 (Control of Excessive Biofilm for the Treatment of High Strength Organic Wastewater by Biofilm Process)

  • 임재명;권재혁;한동준
    • 환경위생공학
    • /
    • 제10권3호
    • /
    • pp.67-77
    • /
    • 1995
  • This study was performed for minimization of excessive biofilm effects at the high strength organic wastewater treatment. As a results of biofilm attachment experiment using piggery wastewater, aggravation of water quality due to excessive biofilm showed after 15 days of operating times.4 excessive biofilm phase, the equivalent biofilm thickness and VSS contents per unit aura were observed in the range of 1,100 to $1,200{\mu}m$ and 2.5 to 3.0mg $VSS/cm^{2}$, respectively. In the aerobic fixed biofilm reactor/anoxic fixed biofilm reactor(AFBR/ANFBR) process with endogenous respiration phase, the BOD removal efficiency was obtained more than 90 percentage at the surface loading rate and volumetric loading rate of the AFBR maintained less than 17 g $BOD/m^{2}{\cdot}$day and 1.7kg $BOD/m^{3}{\cdot}$day, respectively. The removal efficiency of TKN and $NH_{3}$-N at the loading rates below 5.60g $NH_{3}-N/m^{2}{\cdot}day$ and 0.56kg $NH_{3}-N/m^{3}{\cdot}$day were above 76 percentage and 82 percentage, respectively. In order to reduced sludge production rate and aggravation of water quality, endogenous respiration phase was accepted at first AFBR reactor. As a results of this operating condition, sludge production was minimized and removal efficiency was maintained stability.

  • PDF

Low Temperature Effects on the Nitrification in a Nitrogen Removal Fixed Biofilm Process Packed with SAC Media

  • Jang, Se-Yong;Byun, Im-Gyu
    • 한국환경과학회지
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2013
  • A fixed biofilm reactor system composed of anaerobic, anoxic(1), anoxic(2), aerobic(1) and aerobic(2) reactor was packed with synthetic activated ceramic (SAC) media and adopted to reduce the inhibition effect of low temperature on nitrification activities. The changes of nitrification activity at different wastewater temperature were investigated through the evaluation of temperature coefficient, volatile attached solid (VAS), specific nitrification rate and alkalinity consumption. Operating temperature was varied from 20 to $5^{\circ}C$. In this biofilm system, the specific nitrification rates of $15^{\circ}C$, $10^{\circ}C$ and $5^{\circ}C$ were 0.972, 0.859 and 0.613 when the specific nitrification rate of $20^{\circ}C$ was assumed to 1.00. Moreover the nitrification activity was also observed at $5^{\circ}C$ which is lower temperature than the critical temperature condition for the microorganism of activated sludge system. The specific amount of volatile attached solid (VAS) on media was maintained the range of 13.6-12.5 mg VAS/g media at $20{\sim}10^{\circ}C$. As the temperature was downed to $5^{\circ}C$, VAS was rapidly decreased to 10.9 mg VAS/g media and effluent suspended solids was increased from 3.2 mg/L to 12.0 mg/L due to the detachment of microorganism from SAC media. And alkalinity consumption was lower than theoretical value with 5.23 mg as $CaCO_3$/mg ${NH_4}^+$-N removal at $20^{\circ}C$. Temperature coefficient (${\Theta}$) of nitrification rate ($20^{\circ}C{\sim}5^{\circ}C$) was 1.033. Therefore, this fixed film nitrogen removal process showed superior stability for low temperature condition than conventional suspended growth process.

생물막공법을 이용한 도시하수처리에 관한 연구 (A Study on the Municipal Wastewater Treatment Using Biofilm Process)

  • 곽병찬;탁성제;김남천;황용우
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.62-75
    • /
    • 2000
  • Most of biological treatment to remove contaminants in municipal wastewater have been conducted by activated sludge process. But, the process have several probIems such as enormous site needed for construction of treatment facilities, unstable treatment due to limited ability to control load fluctuation, frequent sludge bulking and appearance of lots of surplus sludge. In this study, the experiments were performed through submerging biofilm of PEPP media in existing aeration tank with raw water from municipal wastewater treatment plant and then submerging PVDC and PEPP media, different from shape and chemical peculiarity in anoxic reactor. Throughout the experience, nutrient removal efficiency according to HRT, nitrogen phosphorous removal efficiency, behavior of nitrogen and dewatering efficiency have been compared and analysed with those of activated sludge process. As the results, BOD removal efficiency according to BOD volumetric load and F/M ratio was not found any differency in two processes, but was decreased below 90% as going along the condition of high load in activated sludge process. Kinetic coefficient was $K_{max}=1.162day^{-1}$, $K_s=53.77mg/L$, $Y=0.166mgVSS/mgBOD_{rem}$. and $K_d=0.019day^{-1}$. It was found that the removal efficiency, even though in aerobic condition, in biofilm process equipped anoxic reactor was higher than the one in activated sludge process within the range of 70~80%, and became better as HRT increased. Phosphorous removal efficiency was not found any differency in two processes. In biofilm process, treament efficiency even in conditions of high load was not decreased, because the biomass concentration could be maintained in high condition compared with activated sludge process. As HRT increased, suspended and attached biomass was increased and the other hand, F/M ratio was decreased as biomass' increasing. Biomass thickness was increased. from $10.43{\mu}m$ to $10.55{\mu}m$ as HRT increased and density of biomass within $40.79{\sim}41.16mg/cm^2$. The results also present that the dewatering efficiency of sludge generated in biofilm process was higher than in activated sludge process, and became better as HRT increased.

  • PDF

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.

효율적 질소제거를 위한 단일 혐기성반응조의 개선 (Improvement of Single Anaerobic Reactor for Effective Nitrogen Removal)

  • 한동준;류재근;임연택;임재명
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.9-17
    • /
    • 1997
  • This research aims to remove nitrogen in the piggery wastewater by combined process with upflow anaerobic sludge blanket (UASB) and biofilm process. For the effective denitrification. anaerobic and anoxic reactors were connected to a reactor. The effluent of aerobix reactor was recycled equally with influent in the upper filter of anaerobic reactor for denitrification and outlet of UBF reactor was connected to the settling tank with $1.5{\;}{\ell}$ capacity and the settling sludge was repeatedly recycled to UASB zone. The organic loading rate of total reactor was operated from 0.4 to $3.1kgCOD/m^{3}/d$ and it was observed that the removal rate of TCOD was 80 to 95 percentage. Ammonia nitrogen was removed over 90 percentage in the less volumetric loading rate than $0.1{\;}kgN/m^{3}/d$. But because of non-limitation of organic materials, it was reduced to 70 percentage in the more volumetric loading rate than $0.6{\;}kgN/m^{3}/d$. But denitrification rate was observed 100 percentage in the all of loading rate. This is caused by the maintenance of optimum temperature, sufficient carbon source, and competition of electron acceptors. The results of COD mass balance at the $1.21{\;}kgCOD/m^{3}/d$ was observed with the 71.7% percentage of influent COD. It was revealed that the most part of organic materials was removed in the aerobic and the anaerobic reactor because 38.4 percentage was conversed into $CH_{4}$ gas and 11 percentage was removed in the aerobic reactor with cell synthesis and metabolism. Besides, 5.7% organics was used to denitrification reaction and 3.7% organics related to sulfate reduction.

  • PDF