Seung Hyoung Ko;Joon Ho Park;Da Woon Wang;Eun Seok Kang;Hyun Wook Han
Journal of Information Technology Services
/
v.22
no.5
/
pp.99-108
/
2023
As the computerization of hospitals becomes more advanced, security issues regarding data generated from various medical devices within hospitals are gradually increasing. For example, because hospital data contains a variety of personal information, attempts to attack it have been continuously made. In order to safely protect data from external attacks, each hospital has formed an internal team to continuously monitor whether the computer network is safely protected. However, there are limits to how humans can monitor attacks that occur on networks within hospitals in real time. Recently, artificial intelligence models have shown excellent performance in detecting outliers. In this paper, an experiment was conducted to verify how well an artificial intelligence model classifies normal and abnormal data in network traffic data generated from medical devices. There are several models used for outlier detection, but among them, Random Forest and Tabnet were used. Tabnet is a deep learning algorithm related to receive and classify structured data. Two algorithms were trained using open traffic network data, and the classification accuracy of the model was measured using test data. As a result, the random forest algorithm showed a classification accuracy of 93%, and Tapnet showed a classification accuracy of 99%. Therefore, it is expected that most outliers that may occur in a hospital network can be detected using an excellent algorithm such as Tabnet.
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.901-904
/
2006
인터넷 사용자들의 무선 네트워크의 활용빈도가 점차 높아지고 무선 네트워크의 보안시스템도 요구되면서 무선 네트워크의 안정적이고 원활한 활용과 사용자의 정보 노출의 위험을 줄이고자 유무선 통합형 IDS/IPS도 개발되고 있는 단계다. 본 논문에서는 무선랜 환경을 지원하는 유무선 IPS시스템을 구현하고, 비정상적인 트래픽 탐지의 효율성을 높여 IPS 시스템의 성능향상에 기여정도를 파악 및 분석하였다. 본 논문에서 구축한 IPS시스템은 하이브리드 형태로 구현하였으며 Snort-inline[11]과 Snort-wireless[12] 모듈을 사용하여 무선 랜 이상탐지 기능을 구현하였다. 네트워크 모니터링 시스템으로 네트워크의 트래픽 상황을 파악하여 비정상적인 트래픽이 증가되었을 경우, 제안한 IPS시스템에서 비정상 트래픽의 탐지 및 차단 기능을 기존 IPS와 성능을 비교/분석하였다.
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.1109-1112
/
2006
DDoS(Distributed Denial-of-Service) 공격은 인터넷 침해가운데 가장 위협적인 공격들 중 하나이며 이러한 공격을 실시간으로 탐지하기 위한 연구는 활발히 이루어져 왔다. 하지만 기존의 탐지 메커니즘이 가지고 있는 높은 오탐지율은 여전히 보완해야할 과제로 남아 있다. 따라서 본 논문에서는 DDoS공격 탐지의 근거로 사용된 기존의 트래픽 볼륨(traffic volume), 엔트로피(entropy), 그리고 카이제곱(chi-square)을 이용한 비정상 행위탐지(Anomaly detection)방식의 침임탐지시스템이 가지는 오탐지율(false alarm rate)을 개선할 수 있는 방안을 제안한다. 또한 공격 탐지 시 프로토콜, TCP 플래그(flag), 그리고 포트 번호를 이용하여 네트워크 관리자에게 보다 자세한 공격 정보를 제공함으로써 효율적으로 공격에 대처할 수 있는 시스템을 설계한다.
Interrupt handling is generally separated from process scheduling. This can lead to a scheduling anomaly and priority inversion. The processor can interrupt a higher priority process that is currently executing, in order to handle a network packet reception interruption on behalf of its intended lower priority receiver process. We propose a new network interrupt handling scheme that combines interrupt handling with process scheduling and the priority of the process. The proposed scheme employs techniques to identify the intended receiver process of an incoming packet at an earlier phase. We implement a prototype system of the proposed scheme on Linux 2.6, and our experiment results show that the prototype system supports the predictable real-time behavior of higher priority processes even when excessive traffic is sent to lower priority processes.
Proceedings of the Korean Information Science Society Conference
/
2006.06c
/
pp.313-315
/
2006
최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.488-491
/
2012
최근 카메라 센서 및 알고리즘의 발달로 엔터테인먼트 목적의 영상 시스템을 비롯한 공정 기술, 교육 및 의료 등 다양한 목적의 영상 시스템이 개발 되고 있다. 또한 범죄 예방, 사고 상황 인식을 위한 감시 영상 시스템의 연구도 활발히 진행되고 있다. 본 논문에서는 이상 상황 인식을 위한 지능형 교통 시스템에 대해 제안하고자 한다. 제안하는 시스템은 크게 학습 과정과 이상 상황 인식 과정으로 나누어진다. 학습 과정에서는 CCTV와 같은 정적인 카메라에서 촬영된 도로 교통 영상에서 이동 객체의 특징을 추출하고 이를 추적하여 특징 벡터를 구성한다. 구성된 특징 벡터들은 클러스터링 기법을 통해 장면을 모델링하는데 이용되며 최종적으로 이 모델을 이용해 실시간으로 도로 교통 영상에서 이상 상황을 인식할 수 있게 된다. 실험을 통한 성능 평가를 통해 시스템의 우수함을 확인 하였다.
Journal of the Korean Society of Industry Convergence
/
v.27
no.4_2
/
pp.1001-1007
/
2024
Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.1031-1034
/
2007
다양한 유무선 단말의 등장과 함께 원하는 곳에서 시간에 제한없이 네트워크에 접속할 수 있는 유비쿼터스 세상이 눈앞으로 다가왔다. 네트워크 접속이 현대인 생활의 일부분이 된 현실에서 과다 트래픽 발생으로 인한 급작스런 네트워크 상의 장애는 유비쿼터스 환경에서 무엇보다도 큰 위협이라 할 수 있다. 따라서 비정상적으로 발생한 과다 트래픽을 빠르게 탐지하여 대응하는 것은 유비쿼터스 환경을 안전하게 보호하기 위한 필수 요소라 할 수 있다. 본 논문에서는 기존의 트래픽 분석과는 달리 흐르는 네트워크 패킷의 5 tuple 정보를 실시간으로 수집하여 과다/이상 트래픽을 즉각적으로 탐지하고, 이를 자동으로 제어하는 메커니즘에 대해서 소개하고 있다. 실시간으로 8초마다 트래픽 정보를 수집하고 이를 분석하여 트래픽의 특성을 구분 및 위협도를 분석하여 이를 바탕으로 트래픽 제어 정책을 생성 및 적용하는 전반적인 과정에 대한 것이다. 여기에는 본 메커니즘을 실제 테스트망에서 시험한 결과도 포함하고 있다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.4
/
pp.125-144
/
2022
When a variable message signs (VMS) system displays false information related to traffic safety caused by malicious attacks, it could pose a serious risk to drivers. If the normal message patterns displayed on the VMS system are learned, it would be possible to detect and respond to the anomalous messages quickly. This paper proposes a method for detecting anomalous messages by learning the normal patterns of messages using a bi-directional generative pre-trained transformer (GPT) network. In particular, the proposed method was trained using the normal messages and their system parameters to minimize the corresponding negative log-likelihood (NLL) values. After adequate training, the proposed method could detect an anomalous message when its NLL value was larger than a pre-specified threshold value. The experiment results showed that the proposed method could detect malicious messages and cases when the system error occurs.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.4B
/
pp.566-575
/
2010
In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.