• Title/Summary/Keyword: Anomaly Segmentation

Search Result 10, Processing Time 0.028 seconds

Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification (설비 결함 식별 최적화를 위한 오토인코더 기반 N 분할 주파수 영역 이상 탐지)

  • Kichang Park;Yongkwan Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.130-139
    • /
    • 2024
  • Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.

An Anomaly Detection Algorithm for Cathode Voltage of Aluminum Electrolytic Cell

  • Cao, Danyang;Ma, Yanhong;Duan, Lina
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1392-1405
    • /
    • 2019
  • The cathode voltage of aluminum electrolytic cell is relatively stable under normal conditions and fluctuates greatly when it has an anomaly. In order to detect the abnormal range of cathode voltage, an anomaly detection algorithm based on sliding window was proposed. The algorithm combines the time series segmentation linear representation method and the k-nearest neighbor local anomaly detection algorithm, which is more efficient than the direct detection of the original sequence. The algorithm first segments the cathode voltage time series, then calculates the length, the slope, and the mean of each line segment pattern, and maps them into a set of spatial objects. And then the local anomaly detection algorithm is used to detect abnormal patterns according to the local anomaly factor and the pattern length. The experimental results showed that the algorithm can effectively detect the abnormal range of cathode voltage.

H-PaDiM : Anomaly Segmentation Performance Analysis Based on PaDiM-Based Homogeneous Ensemble Method (H-PaDiM : PaDiM 기반 동종 앙상블 기법에 따른 이상 탐지성능 분석)

  • Kim, InKi;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.95-97
    • /
    • 2022
  • 본 논문에서는 산업 현장에서 발생하는 불량품 탐지 분야에서 효율적으로 생산품의 불량을 탐지할 수 있는 PaDiM 구조의 Backbone 모델을 단일 Wide-ResNet 대신 두 개의 Wide-ResNet을 사용함으로써, 단일 모델에서 추출된 저차원의 Feature를 앙상블을 통해 성능 향상을 일으킬 수 있는 것을 증명하였다. 단일 Wide-ResNet 환경에서는 MVTec 데이터셋에서 생성된 다변량 가우시안 분포가 데이터셋의 적은 샘플수로 인하여 각 클래스 간 불균형이 발생하는 문제를 동종 앙상블을 통해 해결할 수 있었다. 따라서 본 논문에서는 제안하는 동종 모델의 앙상블을 사용함으로써 기존의 One-class classification 환경에서 불량품 탐지환경에서 적은 수의 데이터 샘플 환경에서 성능 향상을 나타낼 수 있음을 입증하였다.

  • PDF

Multiple Sclerosis Lesion Detection using 3D Autoencoder in Brain Magnetic Resonance Images (3D 오토인코더 기반의 뇌 자기공명영상에서 다발성 경화증 병변 검출)

  • Choi, Wonjune;Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.979-987
    • /
    • 2021
  • Multiple Sclerosis (MS) can be early diagnosed by detecting lesions in brain magnetic resonance images (MRI). Unsupervised anomaly detection methods based on autoencoder have been recently proposed for automated detection of MS lesions. However, these autoencoder-based methods were developed only for 2D images (e.g. 2D cross-sectional slices) of MRI, so do not utilize the full 3D information of MRI. In this paper, therefore, we propose a novel 3D autoencoder-based framework for detection of the lesion volume of MS in MRI. We first define a 3D convolutional neural network (CNN) for full MRI volumes, and build each encoder and decoder layer of the 3D autoencoder based on 3D CNN. We also add a skip connection between the encoder and decoder layer for effective data reconstruction. In the experimental results, we compare the 3D autoencoder-based method with the 2D autoencoder models using the training datasets of 80 healthy subjects from the Human Connectome Project (HCP) and the testing datasets of 25 MS patients from the Longitudinal multiple sclerosis lesion segmentation challenge, and show that the proposed method achieves superior performance in prediction of MS lesion by up to 15%.

Enhanced Deep Feature Reconstruction : Texture Defect Detection and Segmentation through Preservation of Multi-scale Features (개선된 Deep Feature Reconstruction : 다중 스케일 특징의 보존을 통한 텍스쳐 결함 감지 및 분할)

  • Jongwook Si;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.369-377
    • /
    • 2023
  • In the industrial manufacturing sector, quality control is pivotal for minimizing defect rates; inadequate management can result in additional costs and production delays. This study underscores the significance of detecting texture defects in manufactured goods and proposes a more precise defect detection technique. While the DFR(Deep Feature Reconstruction) model adopted an approach based on feature map amalgamation and reconstruction, it had inherent limitations. Consequently, we incorporated a new loss function using statistical methodologies, integrated a skip connection structure, and conducted parameter tuning to overcome constraints. When this enhanced model was applied to the texture category of the MVTec-AD dataset, it recorded a 2.3% higher Defect Segmentation AUC compared to previous methods, and the overall defect detection performance was improved. These findings attest to the significant contribution of the proposed method in defect detection through the reconstruction of feature map combinations.

A Concomitant Occurrence of the Atlantoaxial Subluxation with Rare Vertebral Formation and Segmentation Defects

  • Choi, Man Kyu;Kim, Sung Bum;Lee, Jun Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.837-842
    • /
    • 2021
  • An atlantoaxial subluxation from the unstable Os odontoideum by the failure of proper integrations between the embryological somites might be a commonly reported pathology. However, its suspicious origin or paralleled occurrence with other congenital anomalies of vertebral body might be a relatively rare phenomenon. The authors present two cases, who simply presented with clinical signs of prolonged, intractable cervicalgia without any neurological deficits, revealed this rare feature of C1-2 subluxation from the unstable, orthotropic type of Os odontoideum that coincide with congenitally fused cervical vertebral bodies between C2-3. Surprisingly, in one case, when traced from the lower cervical down to the thoracic-lumbar levels during the preoperative work-up process, was also compromised with multi-level butterfly vertebrae formations. Presented cases highlight the association of various congenital vertebrae anomalies and the rationale to fuse only affected joints.

Abnormal Behavior Detection and Localization Using Aspect Ratio Based on Mask R-CNN (Mask R-CNN 기반 Aspect Ratio를 활용한 이상행동 검출 및 영역화 방법)

  • Lim, Hyunseok;Hu, Xufeng;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.99-101
    • /
    • 2022
  • 이상 행동을 탐지하는 딥러닝 기반 검지 시스템은 동영상 기반 데이터로부터 움직임을 보이는 객체를 추적하고 그 객체의 행동을 분석하여 정상적인 행동 범위를 벗어나는 패턴을 보이는 영역을 이상으로 탐지한다. 특히 생성적 적대 신경망(GAN)과 광학 흐름 추정(Optical flow estimation) 기법을 활용하여 움직임에 대한 특징 정보를 추출하고 이를 학습하여 행동 패턴에 대한 모델링을 수행한다. 모델 학습 및 테스트에 활용되는 데이터셋의 해상도가 낮거나 이상 행동을 표현하는 특징 정보가 부족할 경우 최종 모델 성능에 부정적 영향을 미치게 되며, 특히 광학 흐름이 표현하는 이동량 측면에서 차이가 크게 나지 않는 이상 객체의 경우 탐지가 정확하게 이뤄지지 않는다. 본 연구에서는 동영상 프레임에서 나타나는 객체의 평균 종횡비를 구하고 정상적인 비율을 벗어나는 객체에 대해서 이상 행동을 취하는 샘플로 처리하는 후처리단 모듈을 제안하여 최종적인 모델 성능을 향상시키는 방법을 고안한다.

  • PDF

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

A Study on the Air Pollution Monitoring Network Algorithm Using Deep Learning (심층신경망 모델을 이용한 대기오염망 자료확정 알고리즘 연구)

  • Lee, Seon-Woo;Yang, Ho-Jun;Lee, Mun-Hyung;Choi, Jung-Moo;Yun, Se-Hwan;Kwon, Jang-Woo;Park, Ji-Hoon;Jung, Dong-Hee;Shin, Hye-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.57-65
    • /
    • 2021
  • We propose a novel method to detect abnormal data of specific symptoms using deep learning in air pollution measurement system. Existing methods generally detect abnomal data by classifying data showing unusual patterns different from the existing time series data. However, these approaches have limitations in detecting specific symptoms. In this paper, we use DeepLab V3+ model mainly used for foreground segmentation of images, whose structure has been changed to handle one-dimensional data. Instead of images, the model receives time-series data from multiple sensors and can detect data showing specific symptoms. In addition, we improve model's performance by reducing the complexity of noisy form time series data by using 'piecewise aggregation approximation'. Through the experimental results, it can be confirmed that anomaly data detection can be performed successfully.

Aeromagnetic Pre-processing Software Based on Graphic User Interface, KMagLevellingTM (그래픽 사용자 인터페이스 기반 항공자력탐사 전처리 S/W, KMagLevellingTM)

  • Ko, Kwang-Beom;Jung, Sang-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Aeromagnetic survey generally require much more pre-processing steps than that of common land survey due to several complex and cumbersome steps included in pre-processing stage. Therefore it is desirable to use specific processing tool especially based on graphic user interface. For this purpose, aeromagnetic pre-processing software based on graphic user interface under the Windows environment, called $KMagLevelling^{TM}$ was developed and briefly introduced. In an aspect of its user-friendliness and originality, three noticeable features of $KMagLevelling^{TM}$ are summarized as the following (1) function of representation and handling for large amount of aeromagnetic data set as a visualization in the form of flight-path (2) function of selective exclusion of unwanted data by using survey area information expressed as polygon, and (3) function of selective removal processing for the irregular flight-path data acquired within the entire survey area by implementing the segmentation of flight-path technique.