• Title/Summary/Keyword: Anomaly Monitoring

Search Result 141, Processing Time 0.029 seconds

Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis (데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반)

  • Hyun-Jong Kim;Sung-Keun Kim;Byoung-Whan Chun;Kyong-Bog, Jin;Seung-Jeong Yang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • Various methods using machine learning and big data have been applied to prevent failures in Data Centers. However, there are many limitations to referencing individual equipment-based performance indicators or to being practically utilized as an approach that does not consider the infrastructure operating environment. In this study, the performance indicators of individual infrastructure equipment are integrated monitoring and the performance indicators of various equipment are segmented and graded to make a single numerical value. Data pre-processing based on experience in infrastructure operation. And an ensemble of RRCF (Robust Random Cut Forest) analysis and Prophet analysis model led to reliable analysis results in detecting anomalies. A failure analysis system was implemented to facilitate the use of Data Center operators. It can provide a preemptive response to Data Center failures and an appropriate tuning time.

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

Relationship between temporal variability of TPW and climate variables (가강수량의 변화패턴과 기후인자와의 상관성 분석)

  • Lee, Darae;Han, Kyung-Soo;Kwon, Chaeyoung;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Chang-suk
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Water vapor is main absorption factor of outgoing longwave radiation. So, it is essential to monitoring the changes in the amount of water vapor and to understanding the causes of such changes. In this study, we monitor temporal variability of Total Precipitable Water (TPW) which observed by satellite. Among climate variables, precipitation play an important part to analyze temporal variability of water vapor because it is produced by water vapor. And El $Ni{\tilde{n}}o$ is one of climate variables which appear regularly in comparison with the others. Through them, we analyze relationship between temporal variability of TPW and climate variable. In this study, we analyzed long-term change of TPW from Moderate-Resolution Imaging Spectroadiometer (MODIS) data and change of precipitation in middle area of Korea peninsula quantitatively. After these analysis, we compared relation of TPW and precipitation with El $Ni{\tilde{n}}o$. The aim of study is to research El $Ni{\tilde{n}}o$ has an impact on TPW and precipitation change in middle area of Korea peninsula. First of all, we calculated TPW and precipitation from time series analysis quantitatively, and anomaly analysis is performed to analyze their correlation. As a result, TPW and precipitation has correlation mostly but the part had inverse correlation was found. This was compared with El $Ni{\tilde{n}}o$ of anomaly results. As a result, TPW and precipitation had inverse correlation after El $Ni{\tilde{n}}o$ occurred. It was found that El $Ni{\tilde{n}}o$ have a decisive effect on change of TPW and precipitation.

Improving the Performance of Machine Learning Models for Anomaly Detection based on Vibration Analog Signals (진동 아날로그 신호 기반의 이상상황 탐지를 위한 기계학습 모형의 성능지표 향상)

  • Jaehun Kim;Sangcheon Eom;Chulsoon Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.

Anomaly detection in blade pitch systems of floating wind turbines using LSTM-Autoencoder (LSTM-Autoencoder를 이용한 부유식 풍력터빈 블레이드 피치 시스템의 이상징후 감지)

  • Seongpil Cho
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.43-52
    • /
    • 2024
  • This paper presents an anomaly detection system that uses an LSTM-Autoencoder model to identify early-stage anomalies in the blade pitch system of floating wind turbines. The sensor data used in power plant monitoring systems is primarily composed of multivariate time-series data for each component. Comprising two unidirectional LSTM networks, the system skillfully uncovers long-term dependencies hidden within sequential time-series data. The autoencoder mechanism, learning solely from normal state data, effectively classifies abnormal states. Thus, by integrating these two networks, the system can proficiently detect anomalies. To confirm the effectiveness of the proposed framework, a real multivariate time-series dataset collected from a wind turbine model was employed. The LSTM-autoencoder model showed robust performance, achieving high classification accuracy.

Development of deep-seated geothermal energy in the Pohang area, Korea (경북 포항지역에서의 심부 지열수자원 개발 사례)

  • Song, Yoonho;Lee, Tae-Jong;Kim, Hyoung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.693-696
    • /
    • 2005
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-temperature geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating. Surface geologic and geophysical surveys including Landsat 1M image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT), and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. In 2004, two test wells of 1.1km and 1.5km depths have been drilled and various kinds of borehole survey including geophysical logging, pumping test, SP monitoring, core logging and sample analysis have followed. Temperature of geothermal water at the bottom of 1.5km borehole reached over $70^{\circ}C$ and the pumping test showed that the reservoir contained huge amount of geothermal water. Drilling for the production well of 2 km depth is on going. After test utilization and the feasibility study, geothermal water developed from the production well is going to be provided to nearby apartments.

  • PDF

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Study on performance improvement of electric-point machine monitoring system (전기선로전환기 모니터링시스템의 성능 향상에 관한 연구)

  • Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4509-4514
    • /
    • 2010
  • In this thesis, the effect of switch maintenance improvement is confirmed after testing and operating the switch monitoring system that were researched and developed originally in order to improve method of electric switch maintenance. However, as in an automatic interlocking station where a ground crew was not placed, repair and inspection could not be carried out until the maintenance person comes in case of switch problems or maintenance. In order to improve this issue, control module was installed in a monitoring system which can communicate through a data radio to a remote computer. Thus, the monitoring device can receive control information which a remote computer commands during the operation of switches. Afterward, it shows information on the real-time status of swith, in particular, anomaly situation through user interface after the switch is operated. By improving performance of the monitoring system in this way which can be managed and controled at a remote place, the prompt countermeasure system in case of disruption will be built and as a result, efficiency and convenience of maintenance improvement will be expected to increase.

Development of the Integrated Fuel Cell Monitoring System (통합 연료전지모니터링 시스템 개발)

  • KIM, HYUNJUN;YEOM, SANGCHUL;AHN, BYUNGKI;KIM, SAEHOON;KUM, YEONGBEOM
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.241-246
    • /
    • 2015
  • The interest of New Renewable Energy is increasing globally because of the increment of the uncertainty for the energy's supply and demand, and the increment of the frequency in weather anomaly and its damages. One of the New Renewable Energies, Hydrogen receives attention as the future energy that can deal with global environment regulation. Fuel Cell Electric Vehicle (FCEV) is an environment-friendly vehicle that uses Hydrogen as fuel. The electric power for FCEV is generated by chemical reaction with Oxygen from the air and Hydrogen. Hyundai Motor Company (HMC) has developed a proprietary fuel cell system since 2005. In 2012, HMC is the first car maker that mass-produces the ix35 FCEV to the worldwide such as North America, Europe, etc. In order to develop and improve the FCEV technology, data acquisition and analysis of the driving vehicle information is essential. Therefore, the monitoring system is developed, which is consist of datalogger, Automatic Vehicle Location (AVL) server and main server. Especially, WCDMA technology is integrated into the system which enables the data analysis without any restriction of time and region. The main function of the system is the analysis of the driving pattern and the component durability, and the safety monitoring. As a result, ix35 FCEV has successfully developed by using the developed monitoring system. The system is going to take an advantage of development in the future FCEV technology.