• 제목/요약/키워드: Anomaly Identification

검색결과 53건 처리시간 0.019초

로컬 API(Anomaly Process Instances) 탐지법을 이용한 컨테이너 터미널 이벤트 분석 (The use of Local API(Anomaly Process Instances) Detection for Analyzing Container Terminal Event)

  • 전대욱;배혜림
    • 한국전자거래학회지
    • /
    • 제20권4호
    • /
    • pp.41-59
    • /
    • 2015
  • 시스템이 다양화 되면서 동시에 저장된 로그도 다양하게 분석할 필요가 생겼다. 이러한 로그 데이터 분석에 관한 필요성이 강해지는 환경이 시간 순으로 발생하는 이벤트 단위의 로그로부터 프로세스 모델을 도출하고, 시스템을 개선시키는 활동에 이바지하도록 요구하고 있다. 기존에는 개별 이벤트 단위의 로그를 분석하면서 속성들의 관계를 파악하는 연구가 활발했다. 본 논문에서는 로그 데이터를 활용한 예외적인 형태의 프로세스 인스턴스를 판별하는 방법으로 LAPID(Local Anomaly Process Instance Detection)를 제안한다. LAPID는 액티비티-릴레이션 매트릭스(Activity relation matrix)를 사용해서 계산된 거리 값을 활용하여, API(Anomaly Process Instance)를 탐색한다. 제시한 방법의 유용성을 검증하기 위하여 항만 물류에서 발생하는 컨테이너 이동에 대한 트레이스(Trace)를 포함하는 로그 데이터에서 예외적인 상황의 프로세스 실행이 가지는 특징을 도출하였다. 이를 위하여 본 논문에서는 국내의 실제 항만에서 발생한 이벤트 로그를 이용하여 사례연구를 수행하였다.

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심 (Anomaly Detection of Big Time Series Data Using Machine Learning)

  • 권세혁
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

패턴사전과 비정형성을 통한 이상치 탐지방법 적용 (Anomaly Detection via Pattern Dictionary Method and Atypicality in Application)

  • 오세홍;박종성;윤영삼
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.481-486
    • /
    • 2023
  • Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.

사장교의 구조식별을 위한 가진실험 데이터분석 (FVT Signal Processing for Structural Identification of Cable-stayed Bridge)

  • 이정휘;김정인;윤자걸
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.923-929
    • /
    • 2004
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neuralnetwork. 7he considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck. and vortical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used for the structural identification using arbitrarily added masses to the bridge.

사장교의 구조식별을 위한 가진실험 데이터분석 (FVT Signal Processing for Structural Identification of Cable-Stayed Bridge)

  • 윤자걸;이정휘;김정인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.619-623
    • /
    • 2003
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neural network. The considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck, and vertical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used fur the structural identification using arbitrarily added masses to the bridge.

  • PDF

Anomaly Detection in Medical Wireless Sensor Networks

  • Salem, Osman;Liu, Yaning;Mehaoua, Ahmed
    • Journal of Computing Science and Engineering
    • /
    • 제7권4호
    • /
    • pp.272-284
    • /
    • 2013
  • In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gateway used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data without prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms triggered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than 5.5%).

Congenital Intracranial Vascular Malformations in Children : Radiological Overview

  • Jung-Eun Cheon;Ji Hye Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권3호
    • /
    • pp.270-279
    • /
    • 2024
  • Prompt medical attention is crucial for congenital intracranial vascular malformations in children and newborns due to potential severe outcomes. Imaging is pivotal for accurate identification, given the diverse risks and treatment strategies. This article aims to enhance the identification and understanding of congenital intracranial vascular abnormalities including arteriovenous malformation, arteriovenous fistula, cavernous malformation, capillary telangiectasia, developmental venous anomaly, and sinus pericranii in pediatric patients.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network

  • Gao, Ke;Chen, Zhi-Dan;Weng, Shun;Zhu, Hong-Ping;Wu, Li-Ying
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.129-140
    • /
    • 2022
  • The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.