• Title/Summary/Keyword: Anodized surface

Search Result 232, Processing Time 0.032 seconds

Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel (스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계)

  • Park, Youngju;Yu, Jinseok;Sim, Seong Gu;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.

Comparison of chemical resistance properties of anodized film according to anodized sealing treatment method of Al6061 alloy (Al6061 합금의 양극산화 봉공 처리 방법에 따른 양극산화 피막의 내화학 특성 비교)

  • Young Uk Han;Sang Sub Lee;Jun Seok Lee;Gibum Jang;Sung Youl Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.201-207
    • /
    • 2024
  • This study compared the chemical resistance properties according to various sealing treatment methods for the anode film formed during the anodization process of Al6061 alloy. Al6061 aluminum was used in four different sealing treatment methods: boiling water sealing, lithium sealing, nickel sealing, and pressurized sealing, and each sample was evaluated for corrosion resistance through a 5% HCl bubble test and the microstructure was observed through a scanning electron microscope(SEM). According to the results, corrosion resistance increased as time and temperature increased in all sealing treatment methods. Relatively, corrosion resistance was high in the order of boiling water sealing, lithium sealing, nickel sealing, and pressure sealing, and the best corrosion resistance was found in pressure sealing. These research results can be helpful in selecting a process necessary to improve the efficiency and performance of anodizing process in the industrial field using aluminum alloys.

Color Evolution in Anodized Titanium (열산화에 의한 티타늄의 발색효과)

  • 송오성;홍석배;이정임
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.325-329
    • /
    • 2002
  • We investigated the oxide thickness and color evolution with the oxidation temperatures between $370^{\circ}C$ and $950^{\circ}C$ for 30 minutes in an electric furnace. Oxide thickness and color index were determined by cross sectional field emission scanning electron microscopy (FESEM) images and digital camera images, respectively. We confirmed that thermal oxidation was suitable for the mass production of color-titanium products, while coloring process window was narrow compared with anodizing oxidation process.

Photocatalysis of Anodized $TiO_2$ Film Co-doped with Nitrogen and Europium

  • Choe, Jin-Uk;Jeong, Yong-Su;O, Han-Jun;Ji, Chung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.191-191
    • /
    • 2009
  • 최근 많은 환경오염물질을 제거하기 위한 방법으로 광촉매를 이용한 기술들이 다양하게 활용되고 있다. 본 연구에서는 높은 비표면적을 갖는 관촉매를 제조하기 위해, 전기화학적인 방법인 양극 산화법을 사용하여 기지 Ti 금속 표면에 pore 형태의 광촉매용 $TiO_2$를 제조하고, 염료분해 반응을 통해 광촉매의 효율을 조사하였다. 또한 염료분해 효율을 높이기 위해 $Eu(NO_3)_3$를 첨가하여 염료분해 반응에 미치는 영향에 대해 조사하였다.

  • PDF

The histometric analysis of osseointegration in hydroxyapatite surface dental implants by ion beam-assisted deposition

  • Kim, Min-Kyung;Choi, Jung-Yoo;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Sung-Tae;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.363-372
    • /
    • 2008
  • Purpose: This study compared the effects of coating implants with hydroxyapatite (HA) using an ion beam-assisted deposition (IBAD) method prepared with machined, anodized, sandblasted and large-grit acid etched (SLA) surfaces in minipigs, and verified the excellency of coating method with HA using IBAD. Material and Methods: 4 male Minipigs(Prestige World Genetics, Korea), 18 to 24 months old and weighing approximately 35 to 40 kg, were chosen. All premolars and first molars of the maxilla were carefully extracted on each side. The implants were placed on the right side after an 8 week healing period. The implant stability was assessed by resonance frequency analysis (RFA) at the time of placement. 40 implants were divided into 5 groups; machined, anodized, anodized plus IBAD, SLA, and SLA plus IBAD surface implants. 4 weeks after implantation on the right side, the same surface implants were placed on the left side. After 4 weeks of healing, the minipigs were sacrificed and the implants were analyzed by RFA, histology and histometric. Results: RFA showed a mean implant stability quotient (ISQ) of $75.625{\pm}5.021$, $76.125{\pm}3.739$ ISQ and $77.941{\pm}2.947$ at placement, after 4 weeks healing and after 8 weeks, respectively. Histological analysis of the implants demonstrated newly formed, compact, mature cortical bone with a nearby marrow spaces. HA coating was not separated from the HA coated implant surfaces using IBAD. In particular, the SLA implants coated with HA using IBAD showed better contact osteogenesis. Statistical and histometric analysis showed no significant differences in the bone to implant contact and bone density among 5 tested surfaces. Conclusion: We can conclude that rough surface implants coated with HA by IBAD are more biocompatible, and clinical, histological, and histometric analysis showed no differences when compared with the other established implant surfaces in normal bone.

STUDY ON THE ENHANCING MICRO-ROUGHNESS OF POROUS SURFACED DENIAL IMPLANT THROUGH ANODIZATION (양극산화처리를 통한 다공성 임플랜트 표면의 표면거칠기 증대에 대한 연구)

  • Yoon, Tae-Ho;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.617-627
    • /
    • 2006
  • Statement of problem: HA has been used as a coating material on Ti implants to improve osteoconductivity. However. it is difficult to form uniform HA coatings on implants with complex surface geometries using a plasma spraying technique. Purpose : To determine if Ti6Al4V sintered porous-surfaced implants coated with HA sol-gel coated and hydrothermal treated would accelerate osseointegration. Materials and Methods : Porous implants which were made by electric discharge were used in this study. Implants were anodized and hydrothermal treatment or HA sol-gel coating was performed. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. To make a HA sol, triethyl phosphite and calcium nitrate were diluted and dissolved in anhydrous ethanol and mixed. Then anodized implant were spin-coated with the prepared HA sols and heat treated. Samples were soaked in the Hanks solution with pH 7.4 at $37^{\circ}C$ for 6 weeks. The microstructure of the specimens was observed with a scanning electron microscope (SEM), and the composition of the surface layer was analyzed with an energy dispersive spectroscope (EDS). Results : The scanning electron micrographs of HA sol-gel coated and hydrothermal treated surface did not show any significant change in the size or shape of the pores. After immersion in Hanks' solution the precipitated HA crystals covered macro- and micro-pores The precipitated Ca and P increased in Hanks' solution that surface treatment caused increased activity. Conclusion : This study shows that sol-gel coated HA and hydrothermal treatment significantly enhance the rate of HA formation due to the altered surface chemistry.

Evaluation of Biocompatibility of Anodized and Hydrothermally Treated Pure Niobium Metal (양극산화와 열수처리한 순수 니오비움 금속의 생체활성 평가)

  • Won, Dae-Hee;Choi, Un-Jae;Lee, Min-Ho;Bae, Tae-Sung
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.79-88
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10\times10mm$ in dimension were polished sequentially from #600, #800, #1000 emery paper. The surface pure niobium specimens were anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was 10 $mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at 300$^{\circ}C$ for 2 hours using an autoclave. Then, specimens were immersed in the Hanks' solution with pH 7.4 at 37$^{\circ}C$ for 30 days. The surface of specimen was characterized by scanning electron microscope(SEM), energy dispersive X-ray microanalysis(EDX), potentiostat/galvanostat test, and cytotoxicity test. The results obtained was summarized as follows; According to the result of measuring corrosion behavior at 0.9% NaCl, corrosion resistance was improved more specimens treated with anodic oxide than in hydrothermal treated ones. The multi-porous oxide layer on surface treated through anodic oxidation showed a structure that fine pores overlap one another, and the early precipitation of apatite was observed on the surface of hydrothermal treated samples. According to the result of EDX after 30 days deposition in Hanks' solution, Ca/P was 1.69 in hydrothermal treated specimens. In MTT test, specimens treated through anodic oxidation and hydrothermal treated ones showed spectrophotometer similar to that of the control group. Thus no significant difference in cytotoxicity was observed (P>0.05).

  • PDF

Investigation of anodized titanium implants coated with triterpenoids extracted from black cohosh: an animal study

  • Park, In-Phill;Kang, Tae-Joo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Ju-Han;Lee, Joo-Hee;Lee, Shin-Jae;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate bone response to anodized titanium implants coated with the extract of black cohosh, Asarum Sieboldii, and pharbitis semen. MATERIALS AND METHODS. Forty anodized titanium implants were prepared as follows: group 1 was for control; group 2 were implants soaked in a solution containing triterpenoids extracted from black cohosh for 24 hours; group 3 were implants soaked in a solution containing extracts of black cohosh and Asarum Sieboldii for 24 hours; group 4 were implants soaked in a solution containing extracts of pharbitis semen for 24 hours. The implants from these groups were randomly and surgically implanted into the tibiae of ten rabbits. After 1, 2, and 4 weeks of healing, the nondecalcified ground sections were subjected to histological observation, and the percentage of bone-to-implant contact (BIC%) was calculated. RESULTS. All groups exhibited good bone healing with the bone tissue in direct contact with the surface of the implant. Group 2 ($52.44{\pm}10.98$, $25.54{\pm}5.56$) showed a significantly greater BIC% compared to that of group 3 ($45.34{\pm}5.00$, $22.24{\pm}2.20$) with respect to the four consecutive threads and total length, respectively. The BIC% of group 1 ($25.22{\pm}6.00$) was significantly greater than that of group 3 ($22.24{\pm}2.20$) only for total length. CONCLUSION. This study did not show any remarkable effects of the extract of black coshosh and the other natural products on osseointegration of anodized titanium implants as coating agents. Further studies about the application method of the natural products on to the surface of implants are required.

Effect of Surface Treatment of Titanium on the Formation of Apatite Crystal (아파타이트의 형성에 미치는 티타늄의 표면처리 효과)

  • Chung, H.W.;Won, D.H.;Lee, M.H.;Bae, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.231-232
    • /
    • 1998
  • The purpose of this study was to examine whether the precipitation of calcium phosphate on titanium surface was affected by surface modification. To improve the bone conductivity, of titanium, samples were devided into 4 groups. Group 1 was immersed in 5M-NaOH solution at $60^{\circ}C$ for 24 hours. Group 2 was immersed in 5M-NaOH solution at $60^{\circ}C $ for 24 hours and heat-treated at $600^{\circ}C$ for 1 hour. Group 3 was anodized in Hanks' solution at 1V, $25^{\circ}C$ for 1 hour. Group 4 was anodized in Hanks' solution at 5V, $80^{\circ}C$ for 5 minutes. And then, all specimens were immersed in the MEM Eagle's medium whose composition was similar to that of extracellular fluid for 30 days. The precipitation of the calcium phosphate on implant surface was increased by the immersion in the NaOH solution, and more highly accelerated by heat treatment at $600^{\circ}C$. The precipitation of the calcium phosphate on titanium implant was increased with the treatment of the anodic oxidation in Hanks' solution at 5V, $80^{\circ}C$.

  • PDF

Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

  • Son, In-Joon;Nakano, Hiroaki;Oue, Satoshi;Kobayashi, Shigeo;Fukushima, Hisaaki;Horita, Zenji
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.275-281
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films