The electrochemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH)₂ in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH)₂ was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·$dm^{-3}$ NaCl and 0.1 mol·$dm^{-3}$ Na₂SO₄ at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min.
Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2006.11a
/
pp.315-316
/
2006
We fabricated GaN nanopores m the etching process of anodic oxidation of aluminum. The aluminum was deposited by using E-beam evaporator on p-type GaN. After the aluminum was anodized GaN structure was exposed to the electric field with the oxidat species. The fabricated nanopore structure provides the enhanced intensity of light emission at the wavelengths 470 nm. We investigated the structure of the GaN nanopores from FE-SEM and EDS measurements.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.334-334
/
2011
We applied N-ion bombardment and heat treatment to the Cu thin films deposited on aluminum oxide layer for the enhancement of adhesion. With e-beam evaporation method. $1,000{\AA}$ thick Cu pre-bombardment layer was deposited on the aluminum oxide surface and then N-ion beam was bombared in order to mix the atoms at the film/substrate interface. Additional $4,000{\AA}$-thick Cu film was the coated. Subsequently, the ion mixide Cu on aluminum oxide was annealed at $200^{\circ}C$ and $300^{\circ}C$ in vacuum.
Aluminum alloy is used by adding various elements according to the needs of the industry. Aluminum alloys such as 5052 and 6061 are known to possess excellent corrosion resistance by adding Mg. Despite their excellent physical properties, corrosion can occur. To solve this problem, an anodization technique generally can improve corrosion resistance by forming an oxide structure with maximized hydrophobic properties through coatings. In this study, the anodizing technique was used to improve the hydrophobicity of aluminum 5052 and 6061 by creating porous nanostructures on top of the surface. An oxide film was formed by applying anodizing voltages of 20, 40, 60, 80, and 100 V to aluminum alloys followed by immersion in 0.1 M phosphoric acid for 30 minutes to expand oxide pores. Contact angle and corrosion characteristics were different according to the structure after anodization. For the 5052 aluminum, the corrosion potential was improved from -363 mV to -154 mV as the contact angle increased from 116° to 136°. For the 6061 aluminum, the corrosion potential improved from -399 mV to -124 mV when the contact angle increased from 116° to 134°.
Proceedings of the Materials Research Society of Korea Conference
/
2003.03a
/
pp.53-53
/
2003
There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.
Anodizing is a typical electrochemical surface treatment method that can improve the corrosion and insulating properties of aluminum alloys. The anodization process can obtain a dense structure. It can be used to artificially grow the thickness of an anodization film. Aluminum 3003 alloy used in this study is the most commonly used alloy for batteries due to its high strength and excellent formability as well as its weldability and corrosion resistance. Aluminum 3003 alloy was anodized at 0 ℃ with 0.3 M oxalic acid at 20 V, 40 V, or 60 V for 1 hour, 6 hours, or 12 hours. As a result of analyzing the composition of each specimen with an Energy Dispersive Spectrometer (EDS), aluminum was converted into an oxide film. The thickness of the formed anodization film increased when the applied voltage and anodization time increased. High corrosion potential values and low corrosion current density values were observed for the thickest oxide layer. The anodization film formed by anodization acted as a protective layer. The electrical resistance increased as the applied voltage and anodization time increased.
This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.