• Title/Summary/Keyword: Anodic treatment

Search Result 155, Processing Time 0.024 seconds

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Fabrication of Novel Thin Film Diode with Multi-step Anodic Oxidation and Post Heat-treatment

  • Hong, Sung-Jei;Lee, Chan-Jae;Moon, Dae-Gyu;Kim, Won-Keun;Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.27-31
    • /
    • 2002
  • Thin film diode with reliable interfacial structure was fabricated by using multi-step anodic oxidation. The thickness of the oxide layer was preciously controlled with anodic voltage. Also, interfacial structure between oxide layer and top electrode was improved by applying post heat-treatment. The thin film diode showed symmetric and stable I-V characteristics after the post heat-treatment.

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

Anodizing science of valve metals

  • Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.96.1-96.1
    • /
    • 2017
  • This presentation introduces anodizing science of typical valve metals of Al, Mg and Ti, based on the ionic transport through the andic oxide films in various electrolyte compositions. Depending on the electrolyte composition, metal ions and anions can migrate through the andic oxide film without its dielectric breakdown when point defects are present within the anodic oxide films under high applied electric field. On the other hand, if anodic oxide films are broken by local joule heating due to ionic migration, metal ions and anions can migrate through the broken sites and meet together to form new anodic films, known as plasma electrolytic oxidation (PEO) treatment. In this presentation, basics of conventional anodizing and PEO methods are introduced in detail, based on the ionic migration and movement mechanism through anodic oxide films by point defects and by local dielectric breakdown of anodic oxide films.

  • PDF

Electrochemical hydrothermal treatment on Pure Titanium by the method of Cathodic reduction (음극환원법에 의한 Pure Ti의 전기화학적 열수처리)

  • Song, Jae-Joo;Kim, Kyeong-Seon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.7 no.4
    • /
    • pp.471-479
    • /
    • 2007
  • The purpose of this study was to examine the optimum condition of impulse during the anodic spark oxidation applying pulse current as well as to find the excellent condition for HA precipitation the after electrochemical hydrothermal treatment by cathode reduction method. After anodic spark oxidation, the anodized specimen and the Pt plate connected cathode and anode, respectively. Hydrothermal treatment performed at 90, 120, $150^{\circ}C$ for 2 hours in the electrolyte containing $K_2HPO_4$, $CaCl_2{\cdot}2H_2O$, Tris(Hydroxymethyl)-$(CH_2OH)_3\;CNH_2$(Aminomethane), and NaCl. The optimum impulse voltage for anodic spark oxidation was 350V. The optimum pulse cycle measured at 10 mS. The HA crystals precipitated excellently by cathode reduction at $150^{\circ}C$ for 2 hours. The phases of anatase, rutile, and HA coating on the surface of modified titanium surface immersed in Hanks' solution for 3weeks were detected by XRD measurement and the intensity of HA crystal phase has increased by temperature and time of hydrothermal treatment. According to the our experiments, we found that Pure Ti will be good materials of bioactivity and biocompatibility.

  • PDF

Effects of Heat Treatments of Aluminum Substrate on Nanopore Arrays in Anodic Alumina (열처리가 알루미나 나노기공의 배열에 미치는 영향)

  • Cho, S.H.;Oh, H.J.;Kim, S.S.;Joo, E.K.;Yoo, C.W.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.856-859
    • /
    • 2002
  • To investigate effects of heat treatments including grain size control in substrate aluminum on nanopore arrays in anodic alumina template, aluminum was heat treated at $500^{\circ}C$ for 1h. The heat treated aluminum was anodized by two successive anodization processes in oxalic solution and the nanopore arrays in anodic alumina layer were studied using TEM and FE-SEM. The highly ordered porous alumina templates with 110 nm interpore distance and 40 nm pore diameter have been observed and the pore array of the anodic alumina has a uniform and closely-packed honeycomb structure. In the case of alumina template obtained from heat treated aluminum substrate, the well- ordered nanopore region in anodic alumina increased and became more homogeneous compared with that from non-heattreated one.

PEO Film Formation Behavior of Al1050 Alloy Under Direct Current in an Alkaline Electrolyte

  • Moon, Sungmo;Kim, Yeajin
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • This work demonstrates arc generation and anodic film formation behaviors on Al1050 alloy during PEO (plasma electrolytic oxidation) treatment under a constant direct current in an alkaline electrolyte containing silicate, carbonate and borate ions. Only one big arc more than 2 mm diameter was generated first at the edges and it was moving on the fresh surface or staying occasionally at the edges, resulting in the local burning due to generation of an extremely big orange colored arc at the edges. Central region of the flat surface was not fully covered with PEO films even after sufficiently long treatment time because of the local burning problem. The anodic oxides formed on the flat surface by arcing once were found to consist of a number of small oxide nodules with spherical shape of $3{\sim}6{\mu}m$ size and irregular shapes of about $5{\sim}10{\mu}m$ width and $10{\sim}20{\mu}m$ length. The anodic oxide nodules showed uniform thickness of about $3{\mu}m$ and rounded edges. These experimental results suggest that one big arc observed on the specimen surface under the application of a constant direct current is composed of a number of small micro-arcs less than $20{\mu}m$ size.

IMPROVEMENT IN HIGH FREQUENCY MAGNETIC PROPERTIES OF THIN AMORPHOUS RIBBONS BY SURFACE OXIDATION

  • Ooae, K.;Fukunaga, H.;Kakehashi, H.;Ogasawara, H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.597-600
    • /
    • 1995
  • The effects of surface oxidation on magnetic properties were investigated at high frequencies (10k-100MHz) for $7-18\mu\textrm{m}$ thick $Co_{70}Fe_{5}Si_{15}B_{10}$ amorphous ribbons with controlled domain structure. Oxidation was accelerated by acid-treatment or anodic oxidation treatment, and the insulation layers were prepared on the surfaces of the ribbons. The acid-treatment was effective in improving permeability and magnetic loss. Although the anodic oxidation treatment was effective in both making oxide layer and thinning, the magnetic properties were not improved compared with the case of the acid-treatment.

  • PDF