• 제목/요약/키워드: Anode-supported SOFC

검색결과 94건 처리시간 0.019초

금속지지체형 고체산화물연료전지와 연료극지지체형 고체산화물연료전지의 물질전달 특성분석 (Mass Transfer Analysis of Metal-Supported and Anode-Supported Solid Oxide Fuel Cells)

  • 박준근;김선영;배중면
    • 대한기계학회논문집B
    • /
    • 제34권3호
    • /
    • pp.317-324
    • /
    • 2010
  • 고체산화물연료전지의 상용화를 위해서 금속지지체형 고체산화물연료전지가 개발되었다. 이 연료전지는 기계적강도를 향상시킨 새로운 개념의 연료전지지만 접합층으로 인해 물질전달률이 감소한다. 본 논문에서는 전산해석을 이용하여 연료극지지체형 고체산화물연료전지와 금속지지체형 고체산화물연료전지의 물질전달율을 비교하고자 한다. 지배방정식, 전기화학반응, 세라믹 물성치 모델이 동시에 해석된다. 그리고 다공성 매질 내부의 물질전달 해석을 위해서 분자확산과 누센확산이 함께 고려된다. 전산해석의 검증을 위해서 실험결과와 해석결과를 비교한다. 금속 지지체형 고체산화물 연료전지의 평균 전류밀도가 연료극지지체형 고체산화물연료전지에 비해 약 23% 감소한다. 그러나 접합층으로 인해 금속지지체형 고체산화물연료전지가 더 균일한 전류밀도 분포를 가진다.

박막 테이프캐스팅과 동시소성에 의한 연료극 지지형 SOFC 단전지 제조 (Fabrication of Anode-Supported SOFC Single Cells via Tape-Casting of Thin Tapes and Co-Firing)

  • 문환;김선동;현상훈;김호성
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.788-797
    • /
    • 2006
  • An anode-supported SOFC single cell having $5{\mu}m$ thin electrolyte was fabricated cost-effectively by tape casting, laminating, and co-filing of anode (NiO-YSZ), cathode (LSM-YSZ), and electrolyte (YSZ) components. The optimal slurry compositions of the green tapes for SOFC components were determined by an analysis of the mean diameter, the slurry viscosity, the tensile strength/strain of the green tapes, and their green microstructures. The single cells with a dense electrolyte and porous electrodes could be co-fired successfully at $1325\sim1350^{\circ}C$ by controlling the contents of pore former and the ratio of coarse YSZ and fine YSZ in the anode and the cathode. The single cell co-fired at $1350^{\circ}C$ showed $100.2mWcm^{-2}$ of maximum power density at $800^{\circ}C$ but it was impossible to apply it to operate at low temperature because of low performance and high ASR, which were attributed to formation of the secondary phases in the cathode and the interface between the electrolyte and the cathode.

연료극 지지체형 SOFC를 이용한 중.저온용 스택 및 발전시스템 개발 (Development of stacks and power generation systems based on anode-supported SOFCs for intermediate temperature operation)

  • 이태희;최진혁;박태성;유영성;박진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1986-1991
    • /
    • 2007
  • KEPRI has studied anode-supported planar SOFCs and kW class stacks operated at intermediate temperature for development of a combined heat and power unit. A single cell composed of Ni-YSZ/FL/ScSZ/LSCF showed the maximum power density of 0.55 W/$cm^2$ at $650^{\circ}C$ and 1.8 W/$cm^2$ at $750^{\circ}C$. With 37 cells of 10${\times}10cm^2$ and stainless steel interconnects, a 1kW class SOFC stack was manufactured. When a 1kW class SOFC system was operated at $750^{\circ}C$ with city gas, it showed the power output of 1.3 kWe at 50 A. It also recuperated heat of 0.57-1.2 kWth according to the loaded current through combustion of unreacted anode off-gas. Recently, KEPRI is developing a new kW class SOFC stack and system to increase efficiency and durability at intermediate temperature.

  • PDF

Performance of Single Cells with Anode Functional Layer for SOFC

  • 최진혁;이태희;박태성;유영성
    • 신재생에너지
    • /
    • 제5권1호
    • /
    • pp.11-17
    • /
    • 2009
  • To improve the performance of the anode-supported Solid Oxide Fuel Cell (SOFC) which can be operated at an intermediate temperature, the functional layer (FL) is introduced on a anode substrate. And the scandia-stabilized zirconia (ScSZ) and samaria-doped ceria (SDC) which have higher ionic conductivity and better chemical stability than yttria-stabilized zirconia (YSZ) are used as material for the anode FL with the Ni, The fabrication process of anode-supported single cell with the anode FL was established and the power density of those was evaluated. As a result, the sample with anode FL (Ni-YSZ) has higher power density than normal cell. The single cell which was composed of the FL (Ni-YSZ) and electrolyte (YSZ) showed about $550mW/cm^2$ of the maximum power density at $650^{\circ}C$ and $1430mW/cm^2$ at $750^{\circ}C$ respectively, In case of the single cell using the ScSZ and SDC as anode FL, the performance of samples decreased rapidly and those showed unstable voltage during long-term test. In case of using methane as a fuel, the cell performance with each FL decreased comparing with $H_2$ fuel. In the region of a high current density, there are large concentration polarizations.

  • PDF

500W 급 연료극 지지체 평관형 고체산화물연료전지 스택의 운전 특성 (Operating Characteristics of Advanced 500W class Anode-supported Flat Tubular SOFC stack in KIER)

  • 임탁형;김관영;박재량;송락현;이승복;신동열
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2007년도 추계학술 발표회
    • /
    • pp.193-198
    • /
    • 2007
  • KIER has been developing the anode supported flat tubular SOFC stack for the intermediate temperature $(700{\sim}800^{\circ}C)$ operation. for this purpose, we have first fabricated anode supported flat tubular cells by the optimization between the current collecting method and the induction brazing process. After that we designed the compact fuel & air manifold by adopting the simulation technique to uniformly supply fuel & air gas and the unique seal & insulation method to make the more compact stack. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90cm^2$ of connected in series with 12 modules, in which one module consists of two cells connected in parallel. The performance of stack in 3 % humidified $H_2$ and air at $800^{\circ}C$ shows maximum power of 507 W. Through these experiments, we obtained basic & advanced technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular SOFC stack in KIER.

  • PDF

과립형성 및 성형방법에 따른 SOFC 음극의 미세구조 및 특성 (Effect of Granulation and Compaction Methods on the Microstructure and Its Related Properties of SOFC Anode)

  • 허장원;이종호;황진하;문주호
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.53-58
    • /
    • 2003
  • 음극지지형 고체산화물 연료전지의 전극성분은 연료전지 성능의 주된 감쇄요인으로 지적되고 있는 분극저항을 줄이기 위해 높은 전기전도도와 가스투과도등이 요구되어지고 있다. 본 연구에서는 SOFC음극의 성능에 영향을 주는 음극의 미세구조, 특히 음극의 기공구조를 다르게 형성시키기 위해 두 가지 서로 다른 과립형성 방법을 이용하여 음극을 제조하고 이에 따라 기판의 기공구조가 어떻게 바뀌는지 또 그로 인해 기판의 미세구조 및 전기전도도가 어떠한 영향을 받는지 관찰하였다 또한 미세구조에 대한 정량적인 화상분석을 통해 기판의 미세구조적인 인자들과 전극특성간의 상관관계를 분석하였다.

La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성 (Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells)

  • 황국진;김민규;김한빛;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.