• Title/Summary/Keyword: Anode thickness

Search Result 183, Processing Time 0.044 seconds

Emission Characteristics of Blue Fluorescent OLED with Anode Materials (양극 물질에 따른 청색 형광 OLED의 발광 특성)

  • Kong, Do-Hoon;Lee, Yo-Seb;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.3
    • /
    • pp.121-125
    • /
    • 2015
  • We studied the blue fluorescent OLED with Mg:Ag, Al, Ni as anode materials. Blue fluorescent OLEDs were fabricated using Anode / $MoO_3$ (3 nm) / 2-TNATA (60 nm) / NPB (30 nm) / SH-1 : BD-2 (5 vol.%, 30 nm) / Bphen (40 nm) / Liq (1 nm) / Al (150 nm). Current density of OLED with Mg:Ag was not measured due to too low work function, and that of OLED with Al showed $45.2mA/cm^2$ at 12 V. Luminance and Current efficiency of OLED with Al showed $385.1cd/m^2$ and 0.9 cd/A. Current density of OLED with Ni of 8, 10, 12 nm thickness showed 10, 12.9, $37.2mA/cm^2$, respectively. Luminance and Current efficiency of OLED with Ni of 8, 10, 12 nm thickness showed 670.9, 991.2, $1,320cd/m^2$ and 6.7, 7.7, 3.6 cd/A, respectively. Transmittance of Al was 52.2% at 476 nm wavelength and that of Ni of 8, 10, 12 nm thickness was 79, 77, 74 %, respectively. In spite of best current density, OLED with Al showed the lowest luminance and current efficiency because of low work function and poor transmittance. When thickness of Ni was increased to 12nm, current efficiency was sharply lower owing to bad transmittance and unbalance of holes and electrons. Finally, OLED with Ni of 10 nm thicknes showed the highest current efficiency.

Effect of Al modified Li4Ti5O12 anode/activated carbon cathode for advanced hybrid supercapacitors

  • Ye-Wan Yoo;;Seung-Hwan Lee
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.6
    • /
    • pp.774-777
    • /
    • 2022
  • In this paper, we successfully fabricated Al-modified Li4Ti5O12 in one-step, easily, simply, and quickly. The structural properties of Li4Ti5O12 by Al modification were favorable to electrochemical activity compared to pristine Li4Ti5O12, and thus, it was confirmed that electrochemical performances such as cell balancing and initial discharge capacitance were effectively improved. The optimized anode/cathode thickness was selected 70 ㎛/240 ㎛. Al modified Li4Ti5O12 realized high discharge capacitance of 61 F/g. Therefore, Al modification can be considered as one of the effective methods for the electrochemical performances of Li4Ti5O12 anodes for next-generation hybrid supercapacitors.

Effect of Ag Capping Layer on the Emission Characteristics of Transparent Organic Light-emitting Devices with Ca/Ag Double-layer Cathodes

  • Lee, Chan-Jae;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.45-48
    • /
    • 2014
  • We have investigated the effects of an Ag capping layer on the emission characteristics of transparent organic light-emitting devices with Ca/Ag double-layer cathodes. The thickness of the Ag layer was varied from 10 to 30 nm, whereas the Ca was fixed to be a 10 nm in the Ca/Ag structure. The luminance and current efficiency on the cathode and anode sides are significantly dependent on the Ag thickness. For example, the current efficiency on the anode side increases from 8.4 to 11.7 cd/A, whereas, on the cathode side, it decreases from 3.2 to 0.2 cd/A as the Ag thickness increases from 10 to 30 nm. These changes in emission characteristics were investigated by measuring electroluminescence, transmission, and reflection spectra.

Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성)

  • Song, Keun-Sik;Song, Rak-Hyun;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.

Preparation of Electrolytic Tungsten Oxide Thin Films as the Anode in Rechargeable Lithium Battery (리튬 이차전지용 텅스텐 산화물 전해 도금 박막 제조)

  • Lee, Jun-Woo;Choi, Woo-Sung;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.680-686
    • /
    • 2013
  • Tungsten oxide films were prepared by an electrochemical deposition method for use as the anode in rechargeable lithium batteries. Continuous potentiostatic deposition of the film led to numerous cracks of the deposits while pulsed deposition significantly suppressed crack generation and film delamination. In particular, a crack-free dense tungsten oxide film with a thickness of ca. 210 nm was successfully created by pulsed deposition. The thickness of tungsten oxide was linearly proportional to deposition time. Compositional and structural analyses revealed that the as-prepared deposit was amorphous tungsten oxide and the heat treatment transformed it into crystalline triclinic tungsten oxide. Both the as-prepared and heat-treated samples reacted reversibly with lithium as the anode for rechargeable lithium batteries. Typical peaks for the conversion processes of tungsten oxides were observed in cyclic voltammograms, and the reversibility of the heat-treated sample exceeded that of the as-prepared one. Consistently, the cycling stability of the heat-treated sample proved to be much better than that of the as-prepared one in a galvanostatic charge/discharge experiment. These results demonstrate the feasibility of using electrolytic tungsten oxide films as the anode in rechargeable lithium batteries. However, further works are still needed to make a dense film with higher thickness and improved cycling stability for its practical use.

도너층 CuPc의 두께변화에 따른 광기전력 효율 특성

  • Kim, Won-Jong;Choe, Hyeon-Min;Choe, Gwang-Jin;Kim, Tae-Wan;Hong, Jin-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.280-280
    • /
    • 2009
  • In a structure of ITO/CuPc/Al, we have studied that the properties of photovoltaic efficiency of copper phthalocyanine(CuPc) in donor layer using simulation. As a rusult, we have confirmed that anode current density is decreased and anode voltage is increased as increasing the thickness of CuPc. Also, when the light intensities is 10 [$mW/cm^2$], the external quantum efficiency is better than the others at the best wavelength of visible spectrum..

  • PDF

UBET Analysis and Model Test of the Forming Process of Magnetron Anode (마그네트론 양극 성형공정의 UBET해석 및 모형실험)

  • Jo, K.H.;Bae, W.B.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.126-136
    • /
    • 1995
  • Copper magnetron anode of a microsave-over consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex processes; vane blanking, pipe cutting and silver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique (UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the roral power consumption with repect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A UBET Analysis of The Warm Forming Process of Magnetron Anode (마그네트론 양극의 온간성형 공정의 UBET해석)

  • 조관형;배원병;김영호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.204-208
    • /
    • 1995
  • Copper magnetron anode of a microwave-oven consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex process ; vane blanking, pipe cutting and sliver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique(UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the total power consumption with respect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

Built-in voltage in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 전극 변화에 따른 유기발광소자의 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Han, Wone-Keun;Kim, Tae-Wan;Ahn, Joon-Ho;Oh, Hyun-Seok;Jang, Kyung-Uk;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.51-52
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photo current is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO and ITO/PEDOT:PSS were used as an anode, and Al and LiF/AI were used as a cathode. It was found that an incorporation of PEDOT:PSS layer between the ITO and $Alq_3$ increases a built-in voltage by about 0.4V. This is consistent to a difference of a highest occupied energy states of ITO and PEDOT:PSS. This implies that a use of PEDOT:PSS layer in anode improves the efficiency of the device because of a lowering of anode barrier height. With a use bilayer cathode system LiF/Al, it was found that the built-in voltage increases as the LiF layer thickness increases in the thickness range of 0~1nm. For 1nm thick LiF layer, there is a lowering of electron barrier by about 0.2eV with respect to an Al-only device. It indicates that a very thin alkaline metal compound LiF lowers an electron barrier height.

  • PDF

Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs (저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상)

  • Ko, Hyun-Jun;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.