• 제목/요약/키워드: Anode supported planar cell

검색결과 18건 처리시간 0.022초

공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성 (Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process)

  • 송락현
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성 (Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell)

  • 송락현;송근숙
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

연료극지지 평판형 고체산화물 연료전지 내에서의 전기 및 물질전달에 대한 간략화된 저항 네트워크 계산 (Simplified Resistor Network Calculation for Electrical and Mass Transport in Anode-Supported Planar Solid Oxide Fuel Cell)

  • 이현재;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1740-1745
    • /
    • 2004
  • A simplified resistor network model for electrical and mass transport in anode-supported planar solid oxide fuel cell (SOFC) was constructed in order to investigate the effect of interconnect rib geometry on the cell performance. For accurate potential calculation, activation and concentration over-potentials at the electrode/electrolyte interfaces were fully considered in this calculation. When contact resistance was not considered, the optimum interconnect rib length were calculated to be $0.1{\sim}0.2$ mm for 2 mm half unit cell for given operation conditions and properties. However, with realistic contact resistance, the interconnect rib length should be increased to provide larger contact area and thus to obtain better performance.

  • PDF

평판형 고체산화물 연료전지의 양방향 수전해 특성 연구 (Study on Reversible Electrolysis Characteristic of a Planar Type SOFC)

  • 최영재;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.657-662
    • /
    • 2017
  • This paper presents the reversible electrolysis characteristics of a solid oxide fuel cell (SOFC) using a $10{\times}10cm^2$ anode supported planar cell with an active area of $81cm^2$. In this work, current-voltage characteristic test and reversible electrolysis cycle test were carried out sequentially for 2,114 hours at a furnace temperature of $700^{\circ}C$. The current-voltage characteristics for reversible electrolysis mode was measured at a current of ${\pm}26.7A$ under various $H_2O$ utilization conditions. The reversible electrolysis cycle was performed 50 times at a current of ${\pm}32.4A$. As a result, The performance degradation of SOEC mode was larger than that of SOFC mode.

1kW 평판형 SOFC 스택제작 및 성능평가 (Fabrication and Performance Test in Stacks up to 1kW Planar Solid Oxide Fuel Cell)

  • 조남웅;황순철;한상무;김영우;김승구;전재호;김도형;전중환
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.5-13
    • /
    • 2007
  • Stacks of solid oxide fuel cell with 1kW max power performance were designed on planar type employing anode-supported cells and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated and tested in serials by using anode-supported cells purchased from Indec, and sealants/interconnects prepared at RIST. In the performance test of the final 16-cells stack, OCV was recorded to be 16.7V. The peak power and the power density showed 1 kW, $0.77W/cm^2$ at $820^{\circ}C$, respectively. In addition, the long-term degradation rate of the power exhibited 2.25 % during 500h at $750^{\circ}C$.

  • PDF

연료극 지지체형 SOFC를 이용한 중.저온용 스택 및 발전시스템 개발 (Development of stacks and power generation systems based on anode-supported SOFCs for intermediate temperature operation)

  • 이태희;최진혁;박태성;유영성;박진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1986-1991
    • /
    • 2007
  • KEPRI has studied anode-supported planar SOFCs and kW class stacks operated at intermediate temperature for development of a combined heat and power unit. A single cell composed of Ni-YSZ/FL/ScSZ/LSCF showed the maximum power density of 0.55 W/$cm^2$ at $650^{\circ}C$ and 1.8 W/$cm^2$ at $750^{\circ}C$. With 37 cells of 10${\times}10cm^2$ and stainless steel interconnects, a 1kW class SOFC stack was manufactured. When a 1kW class SOFC system was operated at $750^{\circ}C$ with city gas, it showed the power output of 1.3 kWe at 50 A. It also recuperated heat of 0.57-1.2 kWth according to the loaded current through combustion of unreacted anode off-gas. Recently, KEPRI is developing a new kW class SOFC stack and system to increase efficiency and durability at intermediate temperature.

  • PDF

테입캐스팅을 이용한 대면적 (100 cm2) 연료극 지지체식 평판형 고체산화물 연료전지의 개발 (Development of Anode-supported Planar SOFC with Large Area by tape Casting Method)

  • 유승호;송근숙;손희정;김종희;송락현;정두환;백동현;신동열
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2003
  • 본 연구에서는 중저온에서 작동되는 연료극 지지체식 평판형 연료전지를 연구하였으며, 저가의 공정인 테입케스팅법을 이용하여 $0.8\~1mn$의 두께와 $25,\; 100,\;150cm^2$크기의 평판형 연료극 지지체를 제작하였고, 연료극 지지체의 특성을 확인하기 위해서 기공률, 가스 투과율 그리고 전기전도도 등을 측정하였다. $12wt.\%$의 결합제를 사용하여 제작된 지지체의 기공률은 $45.8\%$이고 환원 시 $53.9\%$로 증가함을 보였다. 연료극 지지체는 $850^{\circ}C$에서 900S/cm의 높은 전기전도도를 나타내었으며, 1기압 하에서 공기로 측정하였을 때 6l/min의 기체투과량을 보였다. 단전지의 제조는 테잎케스팅 법으로 제조된 연료극 지지체위에 슬러리 디핑 코팅법을 이용하여 전해질과 공기극을 순차적으로 제조하였다. YSZ의 농도를 $10wt.\%\;와\;20wt.\%$로 하여 제조된 전해질의 두께는 각각 form와 300m이었고, 공기극은 LSM-YSZ/LSM/LSCF의 다층 구조로 구성되었다. $10{\mu}m$두께의 전해질은 매우 치밀하였고 3기압 하에서 가스 투과도는 2.5ml/min을 나타내었다. 단전지의 성능 시험에서 $20\~30{\mu}m$두께의 전해질을 갖는 연료극 지지체식 평판형 연료전지는 $750^{\circ}C$에서 0.6V, $300 mA/cm^2$성능을 보였다.

고체산화물 연료전지 스택 열화 방지를 위한 전해질 기술 (Bi-layer Electrolyte for Preventing Solid Oxide Fuel Cell Stack Degradation)

  • 박미영;배홍열;임형태
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.289-294
    • /
    • 2014
  • The stability of a solid oxide fuel cell (SOFC) stack is strongly dependent on the magnitude and profile of the internal chemical potential of the solid electrolyte. If the internal partial pressure is too high, the electrolyte can be delaminated from the electrodes. The formation of high internal pressure is attributed to a negative cell voltage, and this phenomenon can occur in a bad cell (with higher resistance) in a stack. This fact implies that the internal chemical potential plays an important role in determining the lifetime of a stack. In the present work, we fabricate planar type anode-supported cells ($25cm^2$) with a bi-layer electrolyte (with locally increased electronic conduction at the anode side) to prevent high internal pressure, and we test the fabricated cells under a negative voltage condition. The results indicate that the addition of electronic conduction in the electrolyte can effectively depress internal pressure and improve the cell stability.

고체산화물 연료전지 소재공정 요소기술 개발 현황 (Current Status of SOFC Materials and Processing Core Technology)

  • 이종호;손지원;김혜령;김병국;이해원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.123.1-123.1
    • /
    • 2010
  • The solid oxide fuel cell (SOFC) has attracted great deal of attention due to its high electrical efficiency, high waste-heat utilization, fuel flexibility, and application versatility. However, SOFC technology is still not matured enough to fulfill the practical requirements for commercialization. Therefore, all the research and development activities are mainly focused on a development of practically viable SOFCs with higher performance and better reliability. We were successful in fabricating high-performance anode-supported unit cells by employing hierarchically controlled multi-layered electrodes for both structural reliability and high performance. In addition, a novel composite sealing gasket made it possible to achieve excellent sealing integrity even with considerable surface irregularities in a multi-cell planar arrayed stack.

  • PDF

1kW 이하의 평판형 SOFC 스택제작 및 성능평가 (Fabrication and Performance Test in Stacks of Planar Solid Oxide Fuel Cell under 1kW)

  • 조남웅;황순철;한상무;김영우;김승구;전재호;김도형;전중환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.121-124
    • /
    • 2007
  • Stacks of solid oxide fuel cell under 1kW max power were designed on planar type employing anode supported cell and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated by using single cell purchased from Indec, sealant and interconnect prepared at RIST. In performance test of the final 16-cells stacks, OCV was recorded to be 16.7 V. Peak power and power density were 1 kW, 0.77 $W/cm^{2}$ at $820^{\circ}C$, respectively. In addition, the long term degradation rate of the power exhibited 2.25 % in 500 h at $750^{\circ}C$.

  • PDF