• Title/Summary/Keyword: Anode efficiency

Search Result 456, Processing Time 0.028 seconds

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • Kim, Jong-U;Kim, Dong-Seon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF

The characteristics of premeability and formation of clay cake by electrophoresis technique (전기영동기법에 의한 점토케이크의 형성과 투수특성)

  • Kim, Jong-Yun;Kim, Tae-Ho;Kim, Dae-Ra;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.938-946
    • /
    • 2008
  • This study is on sealing leakage holes where are in landfills to make clay cakes with clay particles, which have a negative surface charge using the method of electrophoresis. Generally, electrophoresis is the motion of charged particles in a colloid under the influence of an electric field; particles with a positive charge go to the cathode and negative to the anode. In this study in order to develop the prevention system of leakages of the leachate in landfills, one-dimensional electrophoresis tests were conducted for determining the properties of the motion of the electrophoresis and cutoff using the method of electrophoresis depending on various the effect factors such as types of clays, concentrations of the clays, and applied electric field. In case of the experiments of determining the optimum clays, Na and Ca-Bentonite, Na and Ca-Montmorillonite, which have greater zeta-potential, cation, exchange capacity as well as ability of cutoff, and Micro-cement inducing cementation were chosen and then the effect of those clays was investigated. Moreover, the properties of the motion and settling of the clays were investigated following electric field varied from 0 to 1V/cm at different concentration of the clays in order to determine both the properties of the motion of the clays and the efficiency of electric field when applying different direct current. Ultimately, the ability of cutoff was examined through measuring the permeability of the clay cakes derived from the one-dimensional electrophoresis tests.

  • PDF

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

A Study on the Treatment of soil Flushing Effluent Using Electrofloatation (전기부상법을 이용한 토양세정 유출수 처리에 관한 연구)

  • 소정현;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 2002
  • The optimal operation conditions, including voltage applied, reaction time, distance between electrodes. and electrode material. were investigated for the treatment of soil flushing effluent using electrofloatation. When 3V was applied for 1 hour, 88% oil-water separation efficiency was achieved. In case of 6V and above, 90% efficiencies were achieved. As reaction time and distance between electrodes were longer, separation efficiencies were higher and lower, respectively. Separation efficiencies for different anode materials were copper > aluminum > iron > titanium. It might result from the differences of their electrical conductivities.

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

The Performance Degradation of PEMFCs Fabricated with Different GDLs During Exposure to Simultaneous Sulfur Impurity Poisoning Condition (서로 다른 GDL을 이용한 고분자전해질 막 연료전지의 황불순물 복합피독에 의한 성능 저하)

  • Lee, Soo;Kim, Jae-Hyun;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.146-151
    • /
    • 2013
  • This paper reveals the performance decrease and recovery of PEMFC when the contaminated fuel gas and air source with sulfur impurities such as hydrogen sulfide and sulfur dioxide were simultaneously introduced to anode and cathode, respectively. Three different GDLs were fabricated with different carbon black and activated carbon to prevent an introduction of sulfur compound impurities into MEA. components. The severity of $SO_2$ and $H_2S$ poisoning was depended on concentrations(3 ppm - 10 ppm) of sulfur impurities. Especially, cell performance degradation rate was rapid when MEA fabricated with CN-2 GDL because it had little porosity on GDL surface. Moreover, the cell performance can be recovered up to 90%-95% only with neat hydrogen and fresh air feeding.. Conclusively, MEA fabricated with porous CN-1 GDL showed the best cell performance and recovery efficiency during exposure to poisoning condition by simultaneous sulfur impurities.

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF

Degradation of MEA and Characteristics of Outlet Water According to Operation Condition in PEMFC (고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성)

  • Hwang, Byungchan;Lee, Sehoon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly(MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.