• Title/Summary/Keyword: Anode Materials

Search Result 845, Processing Time 0.056 seconds

Current Status on Gold Smelting Technology (금제련(金製鍊) 기술(技術)의 현황(現況))

  • Kim, Byung-Su;Kim, Chi-Kwon;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.3-11
    • /
    • 2007
  • Presently, most of gold is smelted from gold concentrates and anode slimes. Anode slimes are by-products of nonferrous smelters such as lead and copper. In addition, gold is recovered from waste dental and medical materials, waste gold coating solution, and waste printed circuit boards (waste PCBs). The smelting method of gold from gold concentrates and various wastes containing high concentration of gold is largely divided into chlorination, cyanidation, and amalgamation methods. For the anode slimes, electrolysis method is usually used, which largely consists of roasting, high temperature melting and electrolysis processes. Also, various wastes containing low concentration of gold are mainly treated by pyrometallursical processes. In the paper, current status on gold smelting technology is reviewed, and a novel process for gold smelting which is researched in the recent is briefly introduced.

A study on the characteristics of inner cell pressure for sealed type Ni-MH rechargeable battery using Zr-based hydrogen storage alloy as anode (Zr-based 수소저장합금을 음극으로 사용한 밀패형 Ni-MH 2차전지의 내압특성에 관한 연구)

  • Kim, Dong-Myung;Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.2
    • /
    • pp.79-90
    • /
    • 1997
  • Extensive work has been done on investigating the inner cell pressure characteristics of sealed type Ni-MH battery in which Zr-Ti-Mn-V-Ni alloy is used as anode. The inner cell pressure of this type Ni-MH battery much more increases with the charge/discharge cycling than that of the other type Ni-MH battery where commercialized $AB_5$ type alloy is used as anode. The increase of inner cell pressure in the sealed type Ni/MH battery using Zr-Ti-Mn-V-Ni alloy system is mainly due to the accumulation of oxygen gas during charge/discharge cycling. The accumulation of oxygen gas arises mainly due to the low rate of oxygen recombination on the MH electrode surface during charge/discharge cycling. The difference of oxygen recombination rate between $AB_5$ type electrode and Zr-Ti-Mn-V-Ni electrode is caused by the difference of electrode reaction surface area resulting from different particle size after their activation and the difference of surface catalytic activity for oxygen recombination reaction, respectively. After EIS analysis, it is identified that the surface catalytic activity affects much more dominantly on the oxygen recombination reaction than the reaction surface area does. In order to suppress the inner cell pressure of Ni-MH battery where Zr-Ti-Mn-V-Ni is used as anode, it is suggested that the surface catalytic activity for oxygen recombination should be improved.

  • PDF

High Transparent, High Mobility MoO3 Intergraded InZnO Films for Use as a Transparent Anode in Organic Solar cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.343-343
    • /
    • 2014
  • We reported on the electrical, optical, structural and morphological properties fabricated by co-sputtering for use as an anode for organic solar cells (OSCs). By adjusting RF and DC power of $MoO_3$ and IZO targets during co-sputtering, we fabricated the $MoO_3$-IZO electrode with graded content of the $MoO_3$ on the IZO films. At optimized $MoO_3$ thickness of 20 nm, the $MoO_3$ graded IZO electrode showed a higher mobility ($33cm^2/V-Sec$) than directly deposited $MoO_3$ on IZO film ($26cm^2/V-Sec$). At visible range (400nm~800nm), optical transmittance of the $MoO_3$ graded IZO electrode is higher than that of directly deposited $MoO_3$ on IZO film. High mobility of $MoO_3$ graded on IZO is attributed to less interface scattering between $MoO_3$ and IZO. To investigate the feasibility of $MoO_3$ graded IZO films, we fabricated conventional P3HT:PCBM based OSCs with $MoO_3$ graded IZO as a function of MoO3 thickness. The OSC fabricated on the $MoO_3$ graded IZO anode showed a fill factor of 66.53%, a short circuit current of $8.121mA/cm^2$, an open circuit voltage of 0.592 V, and a power conversion efficiency of 3.2% comparable to OSC fabricated on ITO anode and higher than directly deposited $MoO_3$ on IZO film. We suggested possible mechanism to explain the high performance of OSCs with a $MoO_3$ graded IZO.

  • PDF

Electrical, Optical and Structural Properties of ZrO2 and In2O3 Co-sputtered Electrdoes for Organic Photovoltaics (OPVs)

  • Cho, Da-Young;Shin, Yong-Hee;Chung, Kwun-Bum;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.473.1-473.1
    • /
    • 2014
  • We report on the characteristics of Zr-doped $In_2O_3$ (IZrO) films prepared by DC-RF magnetron cosputtering of $In_2O_3$ and $ZrO_2$ targets for use as a transparent electrode for high efficient organic solar cells (OSCs). The effect of $ZrO_2$ doping power on electrical, optical, structural, and surface morphology of the IZrO film was investigated in detail. At optimized $ZrO_2$ RF power of 50 W, the IZrO film exhibited a low sheet resistance of 20.71 Ohm/square, and a high optical transmittance of 83.9 %. Furthermore, the OSC with the IZrO anode showed a good cell-performance: fill factor of 61.71 %, short circuit current (Jsc) of $8.484mA/cm^2$, open circuit voltage (Voc) of 0.593 V, and power conversion efficiency (PCE) of 3.106 %. In particular, the overall OSC characteristics of the cell with the IZrO anode were comparable to those of the OSC with the conventional Sn-doped $In_2O_3$ (FF of 65.03 %, Jsc of $8.833mA/cm^2$, Voc of 0.608 V, PCE of 3.495 %), demonstrating that the IZrO anode is a promising alternative to ITO anode in OSCs.

  • PDF

Anode Characteristics of $SnO_x$ Films with Various Oxygen Contents (산소량에 따른 $SnO_x$ 박막의 음극 특성)

  • Moon Hee-Soo;Seong Sang-Hyun;Kim Young-Il;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.178-181
    • /
    • 2000
  • In this experiments, tin oxide thin film anode for microbattery was deposited by using RF magnetron sputtering. The RF power and operating pressure during deposition were fixed at $2.5W/cm^2$ and 10mTorr respectively. The partial pressure of oxygen was varied from $0\%\;to\;100\%$ to control oxygen content and metal Sn chips were used further reducing of oxygen content. According to reduction in the oxygen content formation of the irreversible $Li_2O$ was reduced a thin film anode of $SnO_x$ of high capacity was fabricated. The optimum $SnO_x$, thin film was $SnO_{1.43}$ which exhibited a reversible capacity of $ 500{\mu}Ah/cm^2{\mu}m$ and exhibited good reversibility.

Influence of the Thin Anode Geometry on the Performance of Molten Carbonate Fuel Cells (얇은 연료극 구조가 용융탄산염 연료전지 성능에 미치는 영향)

  • Seo, Dong-Ho;Park, Dong-Nyeok;Yoon, Sung-Pil;Han, Jong-Hee;Oh, In-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2011
  • The Ni-Al anodes of the molten carbonate fuel cell (MCFC) with three different structures were successfully fabricated in order to reduce the thickness of the anode down to 0.3 mm; one was the non-supported anode made by a conventional tape casting method, and others were the supported anodes made by lamination or direct casting on the nickel screen. It was seen from the physical analyses and cell operation that the supported thin anodes made by direct casting showed good mechanical strength and cell performance because of a good contact between the anode materials and the support. The single cell using the above anode showed the cell voltage of 0.858 V at the current density of 150$mA/cm^2$ with the nitrogen cross-over of only 0.6% at the operation time of 1,000 h, which was similar to the performance of the conventional thick (0.7 mm) anode. The ability to utilize a thin configuration of anode should cut down the amount of nickel alloy and consequently reduce its manufacturing cost.

Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties (다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성)

  • Seulgi Shin;Hyeokrae Cho;Yong-Jae Jung;Sang-Mo Koo;Jong-Min Oh;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof (열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성)

  • Im, Chae-Nam;Yu, Hye-Ryeon;Yoon, HyunKi;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.398-406
    • /
    • 2022
  • In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

Study on anode in SOFC (SOFC 연료극의 전극특성)

  • Eom, S.W.;Kim, G.Y.;Moon, S.I.;Lim, H.C.;Lee, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.404-405
    • /
    • 1995
  • Solid Oxide Fuel Cell has advantage of high utility because of having high operation temperature. In case of anode, Ni and YSZ being widly used as anode start materials. But Ni can be sintered during operation because that its operation temperature is very high, so it cause to lower the cell performance. It is very important to control the ratio of Ni to YSZ. In this paper, we studed on characterization of anode by controlling the Ni-YSZ contents.

  • PDF

Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2008
  • The effects of carbon-coated silicon anode on the electrochemical properties and structural change were investigated. The carbon-coated silicon powders have been prepared by thermal decomposition under argon/10wt% propylene mixed gas flow at $700^{\circ}C$. The surface and crystal structure of the synthesized materials were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Lithium cells with electrodes made from the uncoated and the carbon coated silicon anode were assembled and tested. The carbon-coated silicon particles merged together well after the insertion/extraction of lithium ions, and showed a relatively low irreversible capacity compared with the uncoated silicon particle.