• Title/Summary/Keyword: Annual electricity production

Search Result 45, Processing Time 0.031 seconds

A Study on the Performance Prediction for Small Hydro Power Plants (소수력발전소의 성능예측)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.448-451
    • /
    • 2005
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction for small hydro power(SHP) plants and its application. The flow duration curvecan be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique. Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated. It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

  • PDF

Real Option Valuation of a Wind Power Project Based on the Volatilities of Electricity Generation, Tariff and Long Term Interest Rate (발전량, 가격, 장기금리 변동성을 기초로 한 풍력발전사업의 실물옵션 가치평가)

  • Kim, Youngkyung;Chang, Byungman
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For a proper valuation of wind power project, it is necessary to consider volatilities of key parameters such as annual energy production, electricity sales price, and long term interest rate. Real option methodology allows to calculate option values of these parameters. Volatilities to be considered in wind project valuation are 1) annual energy production (AEP) estimation due to meteorological variation and estimation errors in wind speed distribution, 2) changes in system marginal price (SMP), and 3) interest rate fluctuation of project financing which provides refinancing option to be exercised during a loan tenor for commercial scale projects. Real option valuation turns out to be more than half of the sales value based on a case study for a FIT scheme wind project that was sold to a financial investor.

Assessment of Wave Power Potential in the Kangwon and Dongnam Regions, Korea (강원권 및 동남권 지역의 파력발전 잠재성 평가)

  • Jang, Mi-Hyang;Choi, Yo-Soon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.91-105
    • /
    • 2013
  • This study performed an assessment of wave power potential in the Kangwon and Dongnam regions encompassing the East Sea and part of South Sea. Annual electricity production and economic effects of 28 wave energy converters with 750kW capacity were analyzed using significant wave height and peak wave period data(created from the NOAA's NWW3 model) and InVEST software(developed by Stanford University and University of Minnesota). Annual electricity production was estimated to be up to 1,207MWh/year and at least 163MWh/year. The spatial pattern of annual electricity production showed that the sea far from land has higher wave power potential than the sea near coast. The net present value(NPV) of 28 wave energy converters was calculated by considering an operation period of 25 years. When assuming that the electricity produced from wave energy converters is transferred to onshore power plants through underwater cables, the NPV was estimated to be up to 5,883USD(6,600,000KRW) and at least -63,494USD(-71,000,000KRW). In contrast, the NPV increased up to 28,095 USD(31,600,000KRW) when assuming that the electricity is utilized in the Ulleungdo and Dokdo. In addition, it was found that the break-even line of NPV in the East Sea becomes closer towards the land according to the increment of electricity price. The NPV of wave energy converters near the Ulleungdo and Dokdo will be 88,158 USD(99,000,000KRW) if the increment of electricity price is 100KRW.

Analysis of Levelized Cost of Electricity for Type of Stationary Fuel Cells (발전용 연료전지 형식에 따른 균등화 발전비용 분석)

  • DONGKEUN LEE;TORRES PINEDA ISRAEL;YONGGYUN BAE;YOUNGSANG KIM;KOOKYOUNG AHN;SUNYOUP LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.643-659
    • /
    • 2022
  • For the economic analysis of fuel cells, levelized cost of electricity was calculated according to the type, capacity, and annual production of the fuel cells. The cost of every component was calculated through the system component breakdown. The direct cost of the system included stack cost, component cost, assembly, test, and conditioning cost, and profit markup cost were added. The effect of capacity and annual production was analyzed by fuel cell type. Sensitivity analysis was performed according to stack life, capital cost, project period, and fuel cost. As a result, it was derived how much the economic efficiency of the fuel cell improves as the capacity increases and the annual production increases.

Performance Evaluation of BIPV Systems Applied in School Buildings (학교 건축에 대한 BIPV시스템의 성능 평가)

  • Park, Kyung-Eun;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.5
    • /
    • pp.14-23
    • /
    • 2004
  • Building-integrated photovoltaic(BIPV) systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Besides of these benefits, the application of PV systems into school buildings tends to play an important role in energy education to students. In this context, this study aims to analyse the applicability of PV systems into school buildings. For an existing school building, four types of BIPV designs were developed; rooftops, wall-attached, wall-mounted with angle, and sunshading device. Based on energy modeling of those BIPV systems, the whole 60.1kWp rated PV installation is expected to yield about 65.6MWh of electricity, that is about 50% more than the annual electricity consumption of the school, 44MWh. It was also found that the applicability of the PV systems into the school building was very high, and the rooftop systems with the optimized angle was the most efficient in energy production, followed by sunshading, wall-mounted with angle and wall-attached. It concludes that school buildings have a reasonable potential to apply PV systems in the aspects of building elements and electricity production.

A Study on the Performance Prediction Technique for Small Hydro Power Plants (소수력발전소의 성능예측 기법)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction technique for small hydro power(SHP) Plants and its application. The flow duration curve can be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction technique has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique, Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated, It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

Assessment of Offshore Wind Resources Within Japan's EEZ Using QuikSCAT Data

  • Ohsawa, Teruo;Tanaka, Masahiro;Shimada, Susumu;Tsubouchi, Nobuki;Kozai, Katsutoshi
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.841-845
    • /
    • 2009
  • In this paper, offshore wind resources within the Japan's EEZ (Exclusive Economic Zone) are assessed using wind speed data from the microwave scatterometer SeaWinds onboard QuikSCAT. At first, from the 10m-height wind speed from QuikSCAT, 60 m-height wind speed is estimated by using an empirical equation for height correction. Based on the 60 m-height wind speeds, annual energy Production is calculated under an assumption of installing 2 MW wind turbines every $0.64km^2$. The annual energy production is then accumulated for the entire Japan's territorial waters and EEZ ($4.47{\times}10^6km^2$). As a result, it is shown that the total energy Production is estimated to be $4.86{\times}10^4$ TWh/yr. This offshore wind energy Potential within the EEZ is approximately 50 times higher than the actual annual electricity production in Japan.

Analysis of Small Hydropower Resource Characteristics for Nakdong River System (낙동강수계의 소수력자원 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.68-75
    • /
    • 2012
  • Small hydropower is one of the many types of new and renewable energy, which is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower resource management system. This study has given greater precision to calculate annual electricity generation and capacity of small hydropower plants of Nakdong river system by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower resource management system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Small hydropower resource management system can be used gather basic information for positive applications of small hydropower energy nationwide.

Potential of Agricultural Residues for Small Biomass Power Generation in Thailand

  • Panklib, Thakrit
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The demand for energy in Thailand has been continually increasing as the economic and social country grows. Approximately 60% of Thailand's primary energy is imported, mostly petroleum products. In 2008 Thailand's total energy consumption was 80,971 ktoe and the net price of energy imported was up to 1,161 billion Baht which is equivalent to 12.8% of GDP at the current price. The energy consumption or energy demand has been growing at an annual compounded growth rate of 6.42% and the peak electric power demand and electricity consumption was recorded at 22,568 MW and 148,264 GWh and grew at a rate of 7.0% and 7.5% per annum during the period from 1989 to 2008. The gross agriculture production in 2008 was recorded at 135.4 Mt which represents agriculture residue for energy at 65.73 Mt, which is equivalent to energy potential of about 561.64 PJ or 13,292 ktoe an increase in average of 5.59% and 5.44% per year respectively. The agricultural residues can converted to 15,600 GWh/year or 1,780 MW of power capacity. So, if government sector plan to install small biomass gasification for electricity generation 200 kW for Community. The residue agricultural is available for 8,900 plants nationwide. The small biomass power generation for electricity generation not only to reduce the energy imports, it also makes the job and income for people in rural areas as well. This paper's aim is to report the energy situation in Thailand and has studied 5 main agricultural products with high residue energy potential namely sugarcane, paddy, oil palm, cassava, and maize appropriate for small electricity production. These agricultural products can be found planted in many rural areas throughout Thailand. Finally, discuss the situation, methods and policies which the government uses to promote small private power producers supplying electricity into the grid.

Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration (한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구)

  • Kim, Eun Soo;Oh, Kwang Myung;Park, Hongrae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • The Korean government is aiming to produce 20% of the electricity using renewable energy sources by 2030. Ocean renewable energy sources which are abundant in South Korea can do an important role to achieve the goal. This paper introduces a tidal current energy converter utilizing flow induced vibrations which can efficiently work even in the currents slower than 1.0m/s and suggests optimal designs of the tidal energy converter based on speeds of the tidal currents in seven different coastal regions in South Korea. Moreover, the theoretical annual energy production by the tidal converter is estimated at theses costal areas. The total amount of the annual energy production by the tidal energy converter is predicted as 221.77 TWh which is equivalent to 42.3% of the electric consumption of South Korea in 2013. The result shows that the tidal current energy converter can be an important role to achieve the goal of the Korean government.