• Title/Summary/Keyword: Annual electricity generation

Search Result 54, Processing Time 0.029 seconds

Potential of Agricultural Residues for Small Biomass Power Generation in Thailand

  • Panklib, Thakrit
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The demand for energy in Thailand has been continually increasing as the economic and social country grows. Approximately 60% of Thailand's primary energy is imported, mostly petroleum products. In 2008 Thailand's total energy consumption was 80,971 ktoe and the net price of energy imported was up to 1,161 billion Baht which is equivalent to 12.8% of GDP at the current price. The energy consumption or energy demand has been growing at an annual compounded growth rate of 6.42% and the peak electric power demand and electricity consumption was recorded at 22,568 MW and 148,264 GWh and grew at a rate of 7.0% and 7.5% per annum during the period from 1989 to 2008. The gross agriculture production in 2008 was recorded at 135.4 Mt which represents agriculture residue for energy at 65.73 Mt, which is equivalent to energy potential of about 561.64 PJ or 13,292 ktoe an increase in average of 5.59% and 5.44% per year respectively. The agricultural residues can converted to 15,600 GWh/year or 1,780 MW of power capacity. So, if government sector plan to install small biomass gasification for electricity generation 200 kW for Community. The residue agricultural is available for 8,900 plants nationwide. The small biomass power generation for electricity generation not only to reduce the energy imports, it also makes the job and income for people in rural areas as well. This paper's aim is to report the energy situation in Thailand and has studied 5 main agricultural products with high residue energy potential namely sugarcane, paddy, oil palm, cassava, and maize appropriate for small electricity production. These agricultural products can be found planted in many rural areas throughout Thailand. Finally, discuss the situation, methods and policies which the government uses to promote small private power producers supplying electricity into the grid.

Estimation of the Economic Value of Pumped Storage Power Generation in Korea (양수발전의 비시장 가치 추정)

  • Won, DooHwan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.263-275
    • /
    • 2022
  • Purpose - This study estimated the non-market value of pumped storage power generation using the contingent valuation method(CVM). Design/methodology/approach - CVM, a non-market value estimation method, was used. The perception of pumped storage power generation and the willingness to pay(WTP) for pumped storage power generation were investigated among 612 randomly selected households. Findings - It was analyzed that the average value per household was 7309.99 won/month, and the sources of these benefits were 1819.37 won due to the improvement of power generation efficiency, 1320.48 won due to the improvement of power system reliability, 2359.24 won due to the stabilization of electricity rates, 2110.89 won due to water resource management It was assumed that a circle occurred. If the average monthly benefit per household is expanded to cover countries across the country, it is estimated that the annual value to our society from pumped storage power generation will be KRW 1.796.6 trillion. Research implications or Originality - It is necessary to consider the operation of pumped-water power generation by reflecting the value of pumped-up power generation that is not evaluated in the market. Since Korea's electricity market is isolated in a state where it is impossible to connect with other countries, it may be vulnerable to a stable electricity operation system. Therefore, there is a need for a facility that can stably secure reserve power and produce power quickly when necessary. If pumped-water power generation is actively used for power operation, a more stable power system can be secured.

Real Option Valuation of a Wind Power Project Based on the Volatilities of Electricity Generation, Tariff and Long Term Interest Rate (발전량, 가격, 장기금리 변동성을 기초로 한 풍력발전사업의 실물옵션 가치평가)

  • Kim, Youngkyung;Chang, Byungman
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For a proper valuation of wind power project, it is necessary to consider volatilities of key parameters such as annual energy production, electricity sales price, and long term interest rate. Real option methodology allows to calculate option values of these parameters. Volatilities to be considered in wind project valuation are 1) annual energy production (AEP) estimation due to meteorological variation and estimation errors in wind speed distribution, 2) changes in system marginal price (SMP), and 3) interest rate fluctuation of project financing which provides refinancing option to be exercised during a loan tenor for commercial scale projects. Real option valuation turns out to be more than half of the sales value based on a case study for a FIT scheme wind project that was sold to a financial investor.

A Study of Load Matching on the Net-Zero Energy House (넷 제로에너지주택의 부하매칭에 관한 연구)

  • Kim, Beob-Jeon;Lim, Hee-Won;Kim, Deok-Sung;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.55-66
    • /
    • 2018
  • nZEH (net-Zero Energy House) is defined as a self-sufficient energy building where the sum of energy output generated from new & renewable energy system and annual energy consumption is zero. The electricity generated by new & renewable energy system with the form of distributed generation is preferentially supplied to electrical demand, and surplus electricity is transmitted back to grid. Due to the recent expansion of houses with photovoltaic system and the nZEH mandatory by 2025, the rapid increase of distributed generation is expected. Which means, we must prepare for an electricity-power accident and stable electricity supply. Also electricity charges have to be reduce and the grid-connected should be operated efficiently. The introduction of ESS is suggested as a solution, so the analysis of the load matching and grid interaction is required to optimize ESS design. This study analyzed the load matching and grid interaction by expected consumption behavior using actual data measured in one-minute intervals. The experiment was conducted in three nZEH with photovoltaic system, called all-electric houses. LCF (Load Cover Factor), SCF (Supply Cover Factor) and $f_{grid}$ (Grid Interaction Index) were evaluated as an analysis indicator. As a result, LCF, SCF and $f_{grid}$ of A house were 0.25, 0.23 and 0.27 respectively; That of B house were 0.23, 0.23, 0.19, and that of C were 0.20, 0.19, 0.27 respectively.

Power Pattern Analysis According to Irradiation for Photovoltaic Systems (태양광 발전시스템의 일사량에 따른 전력 패턴 분석)

  • Park, Sang-Jun;Kim, Hyeong-Seok;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.46-48
    • /
    • 2009
  • This paper aims to investigate generation conditions necessary for the most efficient generation by measuring electricity power under various irradiation conditions, since the photovoltaic generation system has high costs and low efficiency. In addition, because the irradiation varies hourly, daily, monthly, and yearly, the research on the irradiation necessary for photovoltaic generation was carried out by analyzing the pattern o( Bower under various irradiation conditions. Also, after measuring the daily variations of irradiation and generation power, the monthly accumulated irradiation and monthly accumulate power which had the most generation power were investigated and the pattern of the annual generation power was analyzed. The results of this study are as follows. As for the relationship between the photovoltaic generation system and the irradiation, the generation power increased with the irradiation and when the irradiation was more than 600 $[W/m^2]$ the generation power amounted to more than 100 [Wh] as the resonable result.

  • PDF

Analysis of Small Hydropower Resource Characteristics for Nakdong River System (낙동강수계의 소수력자원 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.68-75
    • /
    • 2012
  • Small hydropower is one of the many types of new and renewable energy, which is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower resource management system. This study has given greater precision to calculate annual electricity generation and capacity of small hydropower plants of Nakdong river system by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower resource management system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Small hydropower resource management system can be used gather basic information for positive applications of small hydropower energy nationwide.

The Economics Evaluation of Grid-connected Photovoltaic Systems in Residential Houses

  • Lee, Hyun-Seung;Kim, Sung-Bum;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2015
  • Purpose: To evaluate the economic performance of grid-connected photovoltaic system in residential house, household electricity bill policy of Korea Electric Power Corporation (KEPCO) must be applied precisely, and market tendency and uncertainty of system also need to be considered. In this study, to evaluate the economic feasibility of PV system, we measured PV power generation and electricity consumption of six of Green home in Daejeon through web based remote monitoring system. Method: We applied Monte-Carlo simulation based on life cycle cost analysis, to reflect an uncertainty of main factor in economic feasibility evaluation of photovoltaic system. Result: First, with deterministic analysis, the difference of NPV of cumulative financial savings among households varied from -3,310 ~ 24,170 thousand won, portraying notably big range. Also the possibility of getting the same result was 50% when applying uncertainty. Second, the higher electricity consumption is, the more economic feasibility of photovoltaic system increases because KEPCO uses progressive taxation in household electricity bill policy. Third, The contribution to variance of electricity price increases in NPV varied from 98.5% to 99.9%. While the inflation rate and annual degradation contributed very little to none.

Estimation of Small Hydropower Resources and Development of Geographic Information System (소수력 자원량 산정과 지리정보시스템 구축)

  • Heo, June-Ho;Park, Wan-Soon;Yun, Jung-Hwan;Jeong, Sang-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower geographic information system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of 840 standard basins by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower geographic information system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc., all of which were not provided by the domestic hydropower Resources Map System. Established GIS small hydropower energy system can be used to basic information for active uses of small hydropower energy which is scattered to the entire country.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Environmental Assessment of Smart Grid Station Project Centered on Pilot Project of Korea Electric Power Corporation Building

  • Park, Sun-Kyoung;Son, Sung-Yong;Kim, Dongwook;Kim, Buhm-Kyu
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.217-229
    • /
    • 2016
  • Increased evidences reveal that the global climate change adversely affect on the environment. Smart grid system is one of the ways to reduce greenhouse gas emissions in the electricity generation sector. Since 2013, Korea Electric Power Corporation (KEPCO) has installed smart grid station in KEPCO office buildings. The goal of this paper is two folds. One is to quantify the reduction in greenhouse gas emissions through smart grid stations installed in KEPCO office buildings as a part of pilot project. Among components of smart grid stations, this research focused on the photovoltaic power system (PV) and energy storage system (ESS). The other is to estimate the reduction in greenhouse gas emissions when PV is applied on individual houses. Results show that greenhouse gas emissions reduce 5.8~11.3% of the emissions generated through the electricity usage after PV is applied in KEPCO office buildings. The greenhouse gas emissions reduction from ESS is not apparent. When PV of 200~500 W is installed in individual houses, annual greenhouse gas emission reduction in 2016 is expected to be approximately $2.2{\sim}5.4million\;tCO_2-eq$, equivalent to 6~15% of greenhouse gas emissions through the electricity usage in the house hold sector. The saving of annual electricity cost in the individual house through PV of 200 W and 500 W is expected to be 47~179 thous and KRW and 123~451 thousand KRW, respectively. Results analyzed in this study show the environmental effect of the smart grid station. In addition, the results can be further used as guidance in implementing similar projects.