• Title/Summary/Keyword: Annealing times

Search Result 768, Processing Time 0.029 seconds

A Study on Fabrication of $Sr_{0.9}Bi_{2.1}Ta_2O_9$ and $La_{0.5}Sr_{0.5}CoO_3$ Thin Films by Self-Patterning Technique (Self-Patterning을 이용한 강유전체 $Sr_{0.9}Bi_{2.1}Ta_2O_9$와 산화물 전극 $La_{0.5}Sr_{0.5}CoO_3$의 박막 제조에 관한 연구)

  • Lim, Jong-Chun;Cho, Tae-Jin;Kang, Dong-Kyun;Lim, Tae-Young;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.116-119
    • /
    • 2003
  • Self-patterning of thin films using photosensitive sol solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. In this study, ferroelectric $Sr_{0.9}Bi_{2.1}Ta_2O_9$(SBT) and $La_{0.5}Sr_{0.5}CoO_3$(LSCO)thin films have been prepared by spin coating method using photosensitive sol solution. $Sr(OC_2H5)_2$, $Bi(TMHD)_3$ and $Ta(OC_2H)_5)_5$ were used as starting materials for SBT solution and $La(OCH_2CH_2OCH_3)_3$, $Sr(OC_2H_5)_2$, $CO(OCH_2CH_2OCH_3)_2$ were used for LSCO solution. Solubility difference by UV irradiation on LSCO thin film allows to obtain a fine patterning due to M-O-M bond formation. The lowest resistivity($4{\times}10^{-3}{\Omega}cm$) of LSCO thin films was obtained by annealing at $740^{\circ}C$.

  • PDF

Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon

  • Lee, Heon-Bok;Baek, Kyong-Hum;Lee, Myung-Bok;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.96-100
    • /
    • 2005
  • The planar Schottky diodes were fabricated and modeled to probe the device applicability of the cracked GaN epitaxial layer on a (111) silicon substrate. On the unintentionally n-doped GaN grown on silicon, we deposited Ti/Al/Ni/Au as the ohmic metal and Pt as the Schottky metal. The ohmic contact achieved a minimum contact resistivity of $5.51{\times}10.5{\Omega}{\cdot}cm^{2}$ after annealing in an $N_{2}$ ambient at $700^{\circ}C$ for 30 sec. The fabricated Schottky diode exhibited the barrier height of 0.7 eV and the ideality factor was 2.4, which are significantly lower than those parameters of crack free one. But in photoresponse measurement, the diode showed the peak responsivity of 0.097 A/W at 300 nm, the cutoff at 360 nm, and UV/visible rejection ratio of about $10^{2}$. The SPICE(Simulation Program with Integrated Circuit Emphasis) simulation with a proposed model, which was composed with one Pt/GaN diode and three parasitic diodes, showed good agreement with the experiment.

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

The study of plasma source ion implantation process for ultra shallow junctions (Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구)

  • Lee, S.W.;Jeong, J.Y.;Park, C.S.;Hwang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Han, S.H.;Kim, K.M.;Lee, W.J.;Rha, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

Study on the Electrical Characteristics of Solution-processed ZrInZnO Thin-film Transistors (액상공정으로 제작된 ZrInZnO 박막 트랜지스터의 전기적 특성에 관한 연구)

  • Jeong, Tae-Hoon;Kim, Si-Joon;Yoon, Doo-Hyun;Jeong, Woong-Hee;Kim, Dong-Lim;Lim, Hyun-Soo;Kim, Hyun-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.458-462
    • /
    • 2011
  • Soution-processed ZrInZnO (ZIZO) thin-film transistors (TFTs) with varying Zr content were fabricated. The ZIZO TFT (Zr=20 at. %/Zn) has an optimal performance with the saturation field effect mobility of 0.77 $cm^2/Vs$, the threshold voltage (Vth) of 2.1 V, the on/off ratio of $4.95{\times}10^6$, and subthreshold swing (S.S) of 0.73 V/decade. Using this optimized ZIZO TFT, the positive and negative gate bias stress according to annealing temperature was also investigated. While the Vth shifts dramatically after 1,000 s of both gate bias stresses, variations in the S.S are negligible. It suggests that electrons or holes are tem porarily trapped in the gate insulator, the semiconductor, or the interface between both layers.

Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process (Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가)

  • Kim, Young-Su;Kang, Min-Ho;Nam, Dong-Ho;Choi, Kang-Il;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

Active Materials for Energy Conversion and Storage Applications of ALD

  • Sin, Hyeon-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.2-75.2
    • /
    • 2013
  • Atomic layer deposition (ALD), utilizing self-limiting surface reactions, could offer promising perspectives for future efficient energy conversion devices. The capabilities of ALD for surface/interface modification and construction of novel architectures with sub-nanometer precision and exceptional conformality over high aspect ratio make it more valuable than any other deposition methods in nanoscale science and technology. In the context, a variety of researches on fabrication of active materials for energy conversion applications by ALD are emerging. Among those materials, one-dimensional nanotubular titanium dioxide, providing not only high specific surface area but also efficient carrier transport pathway, is a class of the most intensively explored materials for energy conversion systems, such as photovoltaic cells and photo/electrochemical devices. The monodisperse, stoichiometric, anatase, TiO2 nanotubes with smooth surface morphology and controlled wall thickness were fabricated via low-temperature template-directed ALD followed by subsequent annealing. The ALD-grown, anatase, TiO2 nanotubes in alumina template show unusual crystal growth behavior which allows to form remarkably large grains along axial direction over certain wall thickness. We also fabricated dye-sensitized solar cells (DSCs) introducing our anatase TiO2 nanotubes as photoanodes, and studied the effect of blocking layer, TiO2 thin films formed by ALD, on overall device efficiency. The photon convertsion efficiency ~7% were measured for our TiO2 nanotubebased DSCs with blocking layers, which is ~1% higher than ones without blocking layer. We also performed open circuit voltage decay measurement to estimate recombination rate in our cells, which is 3 times longer than conventional nanoparticulate photoanodes. The high efficiency of our ALD-grown, anatase, TiO2 nanotube-based DSCs may be attributed to both enhanced charge transport property of our TiO2 nanotubes photoanode and the suppression of recombination at the interface between transparent conducting electrode and iodine electrolytes by blocking layer.

  • PDF

Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties (알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성)

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.259-265
    • /
    • 2014
  • $ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

개방관 가스 유입방식과 고체 열처리방식에 따른 InP 에피로의 Zn 확산 분포 변화

  • Kim, Hyo-Jin;Kim, Seong-Min;Kim, Du-Geun;Kim, Seon-Hun;Gi, Hyeon-Cheol;Go, Hang-Ju;Han, Myeong-Su;Kim, Hoe-Jong;Han, Seung-Yeop;Park, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.301-301
    • /
    • 2010
  • 2010년경 2.5G APD 시장은 3, 000억원 규모로 증가하는데 이는 FTTH 망의 확산에 힘입은 바 크다. 이와 같이 중요한 APD 소자는 현재 광통신 부품시장을 석권해 가고 있는 대만, 중국 업체들은 제조기술을 갖고 있지 않고 주로 미국-일본 기술에 의존하고 있기 때문에 Niche market으로 중요한 부품이라 할 수 있다. APD의 증폭은 높은 전기장에 의해 얻어지는데, 이 때문에 메사형 구조로는 신뢰성을 확보하기 어렵게 되고 따라서 평면형(Planar) 구조로 설계-제작하게 된다. APD 소자는 증폭층의 너비에 의해 APD의 이득-대역폭이 정해지므로 증폭층 폭을 정확하게 조절하는 것은 매우 중요하다. 증폭층의 폭은 에피 성장과 같은 높은 정밀성을 갖는 장비에 의해 조절하는 것이 아니라, Planar 구조의 특성상 Zn-확산에 의해 조절하게 된다. 대부분의 경우 Zn-확산은 Zn 또는 $Zn_3P_2$를 증착하여 drive-in 시키는 방법을 사용하는데, 이 경우 Zn가 interstitial site를 치고 들어감으로 인해 캐리어 농도가 $2{\times}10^{17}\;cm^{-3}$ 정도로 낮게 형성된다. 따라서 높은 인가 바이어스에서 p-side로 공핍층이 전개되기 때문에 증폭층의 폭을 조절하기가 매우 어렵다. 이 현상은 APD 제작에 있어서 수율과 관련이 깊다. 따라서 APD의 증폭층 폭을 tight하게 조절하기 위해서는 p-type 캐리어 농도를 높일 수 있는 gas-phase 확산 방식의 개발이 필요하다. 이 방식에는 Ampoule과 같은 closed tube 방식과 확산로와 같이 Gas를 지속적으로 흘려주면서 확산시키는 open-tube 방식이 있다. Ampoule 방식은 캐리어 농도 측면에서는 가장 좋은 방식이나, Ampoule의 size 및 온도 균일성 등으로 인해 생산성에 문제가 있다. 따라서 open-tube 방식의 확산기술개발은 매우 중요하다 할 수 있다. 본 연구에는 rapid thermal annealing (RTA) 방법에 의한 $Zn_3P_2$ 고체의 확산 방식과 DEZn MO source에 의한 Gas 확산 방식을 바탕으로 InP로의 확산된 Zn원자와 doping의 분포를 비교하였다. 실험결과, Gas 확산방식의 경우 Zn원자가 더욱 더 깊게 확산이 되었으며, 확산된 원자의 대부분이 도펀트로 작용함을 확인할 수 있었다.

  • PDF

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF