• Title/Summary/Keyword: Annealing time

Search Result 935, Processing Time 0.026 seconds

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

Multiplex PCR method for environmental monitoring of approved LM cotton events in Korea (국내 승인 LM면화의 자연환경 모니터링을 위한 multiplex PCR 개발)

  • Jo, Beom-Ho;Seol, Min-A;Shin, Su Young;Kim, Il Ryong;Choi, Wonkyun;Eum, Soon-Jae;Song, Hae-Ryong;Lee, Jung Ro
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.91-98
    • /
    • 2016
  • The growth area of living modified (LM) cotton has steadily increased every year, since its first commercialization in 1996. Development of environmental risk assessment tools and techniques for LM cotton is required for ecosystem safety. We therefore developed multiplex PCR assays for simultaneous detection of two (MON15985, MON531) and four (GHB614, LLCOTTON25, MON88913 and MON1445) LM cotton events approved in Korea, with event specific primer pairs. The PCR reactions were optimized by using event specific primers of six LM cottons at various concentrations. The reactions allows amplification of estimated amplicons of MON15985 (214 bp), MON531 (270 bp), GHB614 (119 bp), LLCOTTON25 (164 bp), MON88913 (276 bp), and MON1445 (389 bp) from multiplex PCR reactions. The multiplex PCR assay developed allowed that two annealing steps (15 cycles at $55^{\circ}C$ and 25 cycles at $60^{\circ}C$) were performed for amplification of distinguished two LM cottons, and only one annealing step (50 cycles at $60^{\circ}C$) was necessary for tetraplex PCR. Primer extension step of all PCR reactions was skipped for time-effective amplification. Our methods suggest that two multiplex PCR assays can be cost-effective and a rapid diagnostic tool for environmental LMO monitoring of six LM cottons.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

Identification of Differentially Expressed Genes Related to Intramuscular Fat Development in the Early and Late Fattening Stages of Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Kim, Sung-Kon;Lee, Jun-Heon;Jeon, Jin-Tae;Lee, Chang-Soo;Im, Seok-Ki;Oh, Sung-Jong;Thompson, J.M.;Yoon, Du-Hak
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.757-764
    • /
    • 2007
  • Marbling of cattle meat is dependent on the coordinated expression of multiple genes. Cattle dramatically increase their intramuscular fat content in the longissimus dorsi muscle between 12 and 27 months of age. We used the annealing control primer (ACP)-differential display RT-PCR method to identify differentially expressed genes (DEGs) that may participate in the development of intramuscular fat between early (12 months old) and late fattening stages (27 months old). Using 20 arbitrary ACP primers, we identified and sequenced 14 DEGs. BLAST searches revealed that expression of the MDH, PI4-K, ferritin, ICER, NID-2, WDNMI, telethonin, filamin, and desmin (DES) genes increased while that of GAPD, COP VII, ACTA1, CamK II, and nebulin decreased during the late fattening stage. The results of functional categorization using the Gene Ontology database for 14 known genes indicated that MDH, GAPD, and COP VII are involved in metabolic pathways such as glycolysis and the TCA cycle, whereas telethonin, filamin, nebulin, desmin, and ACTA1 contribute to the muscle contractile apparatus, and PI4-K, CamK II, and ICER have roles in signal transduction pathways regulated by growth factor or hormones. The final three genes, NID-2, WDNMI, and ferritin, are involved in iron transport and extracellular protein inhibition. The expression patterns were confirmed for seven genes (MDH, PI4-K, ferritin, ICER, nebulin, WDNMI, and telethonin) using real-time PCR. We found that the novel transcription repressor ICER gene was highly expressed in the late fattening stage and during bovine preadipocyte differentiation. This information may be helpful in selecting candidate genes that participate in intramuscular fat development in cattle.

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Computationally Efficient ion-Splitting Method for Monte Carlo ion Implantation Simulation for the Analysis of ULSI CMOS Characteristics (ULSI급 CMOS 소자 특성 분석을 위한 몬테 카를로 이온 주입 공정 시뮬레이션시의 효율적인 가상 이온 발생법)

  • Son, Myeong-Sik;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.771-780
    • /
    • 2001
  • It is indispensable to use the process and device simulation tool in order to analyze accurately the electrical characteristics of ULSI CMOS devices, in addition to developing and manufacturing those devices. The 3D Monte Carlo (MC) simulation result is not efficient for large-area application because of the lack of simulation particles. In this paper is reported a new efficient simulation strategy for 3D MC ion implantation into large-area application using the 3D MC code of TRICSI(TRansport Ions into Crystal Silicon). The strategy is related to our newly proposed split-trajectory method and ion-splitting method(ion-shadowing approach) for 3D large-area application in order to increase the simulation ions, not to sacrifice the simulation accuracy for defects and implanted ions. In addition to our proposed methods, we have developed the cell based 3D interpolation algorithm to feed the 3D MC simulation result into the device simulator and not to diverge the solution of continuous diffusion equations for diffusion and RTA(rapid thermal annealing) after ion implantation. We found that our proposed simulation strategy is very computationally efficient. The increased number of simulation ions is about more than 10 times and the increase of simulation time is not twice compared to the split-trajectory method only.

  • PDF

Development of a Design System for Multi-Stage Gear Drives (2nd Report: Development of a Generalized New Design Algorithm) (다단 치차장치 설계 시스템 개발에 관한 연구(제 2보: 일반화된 신설계 알고리즘의 개발))

  • Chong, Tae-Hyong;Bae, In-Ho;Park, Gyung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.192-199
    • /
    • 2000
  • The design of multi-stage gear drives is a time-consuming process because it includes more complicated problems, which are not considered in the design of single-stage gear drives. The designer has no determine the number of reduction stages and the gear ratios of each reduction stage. In addition, the design problems include not only dimensional design but also configuration design of gear drive elements. There is no definite rule or principle for these types of design problems. Thus the design practices largely depend on the sense and the experiences of the designer, and consequently result in undesirable design solution. A new and generalized design algorithm has been proposed to support the designer at the preliminary phase of the design of multi-stage gear drives. The proposed design algorithm automates the design process by integrating the dimensional design and the configuration design process. The algorithm consists of four steps. In the first step, the user determines the number of reduction stages. In the second step, gear ratios of every stage are chosen using the random search method. The values of the basic design parameters of a gear are chose in the third step by using the generate and test method. Then the values of the dimensions, such as pitch diameter, outer diameter and face width, are calculated for the configuration design in the next step. The strength and durability of each gear is guaranteed by the bending strength and the pitting resistance rating practices by using AGMA rating formulas. In the final step, the configuration design is carried out using simulated annealing algorithm. The positions of gears and shafts are determined to minimize the geometrical volume (size) of a gearbox while avoiding interferences between them. These steps are carried out iteratively until a desirable solution is acquired. The proposed design algorithm is applied to the preliminary design of four-stage gear drives in order to validate the availability. The design solution has considerably good results in both aspects of the dimensional and the configuration design.

  • PDF

A Study on the Formation fo Epitaxial $CoSi_2$ Thin Film using Co/Ti Bilayer (Co/Ti이중박막을 이용한 $CoSi_2$에피박막형성에 관한 연구)

  • Kim, Jong-Ryeol;Bae, Gyu-Sik;Park, Yun-Baek;Jo, Yun-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • Ti film of lOnm thickness and Co film of 18nm thickness were sequentially e-heam evaporated onto Si (100) substrates. Metal deposited samples were rapidly thermal-annt.aled(KTA) in thr N1 en vironment a t $900^{\circ}C$ for 20 sec. to induce the reversal of metal bilayer, so that $CoSi_{2}$ thin films could be formed. The sheet resistance measured by the 4-point probe was 3.9 $\Omega /\square$This valur was maintained with increase in annealing time upto 150 seconds, showing high thermal stab~lity. Thc XRII spectra idrn tified the silicide film formed on the Si substrate as a $CoSi_{2}$ epitaxial layer. The SKM microgr;iphs showed smooth surface, and the cross-sectional TKM pictures revealed that the layer formed on the Si substrate were composed of two Co-Ti-Si alloy layers and 70nm thick $CoSi_{2}$ epl-layer. The AES analysis indicated that the native oxide on Si subs~rate was removed by TI ar the beginning of the RTA, and Ihcn that Co diffused to clean surface of Si substrate so that epitaxial $CoSi_{2}$ film could bt, formed. In thc rasp of KTA at $700^{\circ}C$. 20sec. followed by $900^{\circ}C$, 20sec., the thin film showed lower sheet resistance, but rough surface and interface owing to $CoSi_{2}$ crystal growth. The application scheme of this $CoSi_{2}$ epilayer to VLSI devices and the thermodynarnic/kinetic mechan~sms of the $CoSi_{2}$ epi-layer formation through the reversal of Co/Ti bdayer were discussed.

  • PDF

Preparation of the SiO2 Films with Low-Dit by Low Temperature Oxidation Process (저온 산화공정에 의해 낮은 Dit를 갖는 실리콘 산화막의 제조)

  • Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.990-997
    • /
    • 1998
  • In this work, the $SiO_2$ films on the silicon substrate with different orientations were first prepared by the low temperature process using the ECR plasma diffusion as a function of microwave power and oxidation time. Before and after thermal treatment, the surface morphology, Si/O ratio from physicochemical properties, and the electrical properties of the oxide films were also investigated. The oxidation rate increased with microwave power, while surface morphology showed the nonuniform due to etching. The film quality, therefore, was lowered with increasing the defect by etching and the content of positive oxide ions in the oxide films from bulk by higher self-DC bias. The content of positive oxide ions in the oxide films with different Si orientations showed Si(100) < Si(111) < poly Si. The defects in $Si/SiO_2$ interface of $SiO_2$ film could be decreased by annealing, while $Q_{it}$ and $Q_f$ were independent of thermal treatment and the dependent on concentration of reactive oxide ions and self-DC bias of substrate. At microwave power of 300, and 400 W, the high quality $SiO_2$ film that had lower surface roughness and defect in $Si/SiO_2$ interface was obtained. The value of interface trap density, then, was ${\sim}9{\times}10^{10}cm^{-2}eV^{-1}$.

  • PDF

Study on crystallization behavior of an ethylene-polypropylene copolymer based encapsulant for photovoltaic application (태양전지 봉지재용 에틸렌-프로펠렌 공중합체의 결정화 거동에 관한 연구)

  • Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.737-742
    • /
    • 2016
  • We prepared five different ethylene-propylene copolymers (EPCs) for use as the encapsulant of a photovoltaic module. All of the polymers were of commercial grade from ExxonMobile company and had different ethylene/propylene compositions. The crystallization behaviors and crystal structures of the polymers were analyzed by differential scanning calorimetry and wide angle X-ray scattering diffractometry, respectively. We observed the general trend that the degree of crystallization, density and glass transition temperature of the EPCs decreased with increasing ethylene content. However, an unexpected result was also observed: the EPC with the highest ethylene content (22.2 mol. %) showed the highest melting temperature. As a result, the EPC with 22.2 mol. % of ethylene shows the highest light transmittance, due to its having the lowest degree of crystallization and highest thermal creep resistance. This abnormal result is attributed to the blocky structure prepared by ExxonMobile's special catalyst technology. It was also observed that new additional melting peaks appeared as the crystallization time increased. Using wide angle X-ray scattering diffractometry, it was confirmed that these additional peaks originated from the formation of a new crystal structure caused by annealing.