• Title/Summary/Keyword: Annealing process

Search Result 1,589, Processing Time 0.026 seconds

Investigation of Giant Magnetoresistance in Vacuum-Annealed NiFe/Ag Discontinuous Multilayers

  • Park, Chang-Min;Kim, Young-Eok;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • v.2 no.2
    • /
    • pp.50-54
    • /
    • 1997
  • The vacuum-annealed Ni80Fe20/Ag discontinuous multilayers were found to show giant magnetoresistive behaviors comparable to those of corresponding multilayers annealed at atmospheric pressure in a mixture of H2 and Ar. This vacuum-annealing process will offer potential advantages, enabling a continuous batch process from the deposition to the annealing. Their giant magnetoresistive behaviors were attributed to the magnetostatic coupling that are induced at the edges of the discontinuous magnetic grains. We also present our results about the multilayer patterned into a basic device for the magnetic field sensor.

  • PDF

Magnetic Properties of Permalloy(PB, PC) Strips Fabricated by Powder Rolling Process (분말 압연에 의해 제조된 퍼말로이(PB, PC)의 자성 특성)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.3 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • Two grades of Permalloy strips, Fe-45Ni(PB) and Fe-78Ni-4Mo-5Cu(PC) were fabricated by powder rolling process from elemental powder mixtures. The roll compacted green strips were sintered, homogenized, cold rolled with or without an intermediate annealing and finally heat treated to measure magnetic properties. For a given thickness reduction, rolling with an intermediate annealing was found more effective to achieve a full densification with no visible micropores and also to obtain better magnetic properties. Increasing the final rolling reduction also produced a marked improvement of the magnetic properties whereas the cooling rate during the final heat treatment has little effect in both grades. Addition of a small amount, 0.4% Mn slightly degraded the properties. As an overall, The PM strips produced via powder rolling yielded the similar soft magnetic properties to the corresponding commercial grades produced via wrought processing.

  • PDF

A Study on the Structural Characteristics of PLZT Thin Films with Zr/Ti Ratios Prepared by Sol-Gel Method (Sol-Gel 법으로 제작된 PLZT 박막의 Zr/Ti 비에 따른 구조 특성에 관한 연구)

  • ;;J. Dougherty
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.535-540
    • /
    • 1998
  • Thin films of PLZT were prepared on indium tin oxide(ITO) coated glass substrates by sol-gel process and annealed by rapid thermal annealing(RTA) at $750^{\circ}C$ for 5 minutes. The crystal structure of PLZT thin films were investigated for a different Zr mol% content. XRD results showed that the crystallographic structure was transitted from tetragonal to rhombohedral structure as Zr mol% increased. Raman spectroscopy results showed that the bands of spectra became broader as the amount of Zr mol% increased and two crystal phase coexisted at 2/55/45 PLZT film. Raman spectroscopy was useful for crystal structure analysis of PLZT thin films.

  • PDF

Formation mechanism of silicon nanocrystals fabricated by pulsed laser deposition (펄스레이저 증착법에 의한 실리콘 나노결정 형성 메커니즘)

  • Kim, Jong-Hoon;Jeon, Kyeong-Ah;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.162-164
    • /
    • 2004
  • Nanocrystalline silicon(nc-Si) thin films on the silicon substrates have been prepared by pulsed laser deposition(PLD). The optical and structural properties of films have been investigated depending on deposition temperature, annealing, and oxidation process. When the deposition temperature increased, photoluminescence(PL) intensity abruptly decreased and peaks showed red shift. Annealing process could reduce the number of defect centers. Oxidation had a considerable effect upon the formation and isolation of the nanocrystals. These results indicate that the formation mechanism of Si nanocrystals grown by PLD can be explained by three steps of growth, passivating defect centers, and isolation, sequentially.

  • PDF

Properties of Magneto-resistance by annealing using by co-sputtering method (co-sputtering법으로 제조한 Insb박막의 후열처리기술에 의한 자기저항 특성)

  • Kim, Tae-Hyong;So, Byung-Moon;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.128-132
    • /
    • 2002
  • Many compound semiconductors which have high carrier mobility and small band gap have attentive in application of various practical a field. Especially, InSb served for Hall device and magnetic resistor such as magnetic sensor because InSb thin film has high mobility. Many studies on InSb thin film deposistion because In and Sb has been very different feature of vapor pressure($10^{-4}$ times) When In and. Sb deposited. In this paper studied it In and Sb deposited simultaneously using by method of co-sputtering deposotion. This process, get to effects of manufacture process simplification. After that this paper observed micro structure and electronic behavior of InSb thin film using by co-sputtering and we study properties of magneto-resistance by annealing

  • PDF

Laser Processing Technology in Semiconductor and Display Industry (반도체 및 디스플레이 산업에서의 레이저 가공 기술)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.

Effect of post-annealing on single-walled carbon nanotubes synthesized by arc-discharge

  • Park, Suyoung;Choi, Sun-Woo;Jin, Changhyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.388-394
    • /
    • 2019
  • In this study, high-purity single-walled carbon nanotubes (SWCNTs) were prepared by removing the unreacted metal constituents and amorphous carbon impurities using a post-annealing process. Unlike conventional thermal processing techniques, this technique involved different gas atmospheres for efficient removal of impurities. A heat treatment was conducted in the presence of chlorine, oxygen, and chlorine + oxygen gases. The nanotubes demonstrated the best characteristics, when the heat treatment was conducted in the presence of a mixture of chlorine and oxygen gases. The scanning electron microscopy, transmission electron microscopy, ultraviolet absorbance, and sheet resistance measurements showed that the heat treatment process efficiently removed the unreacted metal and amorphous carbon impurities from the as-synthesized SWCNTs. The high-purity SWCNTs exhibited improved electrical conductivities. Such high-purity SWCNTs can be used in various carbon composites for improving the sensitivity of gas sensors.

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.