Effect of post-annealing on single-walled carbon nanotubes synthesized by arc-discharge

  • Park, Suyoung (Department of Aviation Maintenance Engineering, Far East University) ;
  • Choi, Sun-Woo (Department of Materials Science and Engineering, Kangwon National University) ;
  • Jin, Changhyun (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2019.03.15
  • Accepted : 2019.07.24
  • Published : 2019.08.01

Abstract

In this study, high-purity single-walled carbon nanotubes (SWCNTs) were prepared by removing the unreacted metal constituents and amorphous carbon impurities using a post-annealing process. Unlike conventional thermal processing techniques, this technique involved different gas atmospheres for efficient removal of impurities. A heat treatment was conducted in the presence of chlorine, oxygen, and chlorine + oxygen gases. The nanotubes demonstrated the best characteristics, when the heat treatment was conducted in the presence of a mixture of chlorine and oxygen gases. The scanning electron microscopy, transmission electron microscopy, ultraviolet absorbance, and sheet resistance measurements showed that the heat treatment process efficiently removed the unreacted metal and amorphous carbon impurities from the as-synthesized SWCNTs. The high-purity SWCNTs exhibited improved electrical conductivities. Such high-purity SWCNTs can be used in various carbon composites for improving the sensitivity of gas sensors.

Keywords

References

  1. M. S. Dresselhaus, G. Dresselhaus and P. Avouris (Eds.), Springer, Berlin (2001).
  2. A. E. Pramono, M. Z. Nura, J. W. M. Soedarsono and N. Indayaningsih, J. Ceram. Process. Res. 20 (2019) 1-7.
  3. S. A. X. Stango, U. Vijayalakshmi, Ceram. Int. 45 (2019) 69-81. https://doi.org/10.1016/j.ceramint.2018.09.135
  4. C.-Y. Liu, A. J. Bard, F. Wudl, I. Weitz and J. R. Heath, Electrochem. Solid State Lett. 2 (199) 577-578. https://doi.org/10.1149/1.1390910
  5. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, Appl. Phys. Lett. 75 (1999) 3129. https://doi.org/10.1063/1.125253
  6. L. Yukui, Z. Changchun, L. Xinghui, Diam. Relat. Mater. 11 (2002) 1845-1847. https://doi.org/10.1016/S0925-9635(02)00171-1
  7. J. Y. Kim, M. H. Kim, H. M. Kim, J. Joo, J. H. Choi, Opt. Mater. 21 (2003) 147-151 https://doi.org/10.1016/S0925-3467(02)00127-1
  8. Y. Zhou, L. Wang, X. Li, X. Wang and H. Jiang, J. Ceram. Process. Res. 19 6 (2018) 479-482. https://doi.org/10.36410/JCPR.2018.19.6.479
  9. R. Socher, B. Krause, M. T. Muller, R. Boldt, P. Potschke, Polymer 53 2 24 (2012) 495-504. https://doi.org/10.1016/j.polymer.2011.12.019
  10. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, Carbon 45 (2007) 913-921. https://doi.org/10.1016/j.carbon.2007.01.003
  11. Y. Chen, J. Zhang, Carbon 49 (2011) 3316-3324. https://doi.org/10.1016/j.carbon.2011.04.016
  12. P. Theilmann, D. J. Yun, P. Asbeck, S. H. Park, Org. Electron. 14 (2013) 1531-1537. https://doi.org/10.1016/j.orgel.2013.02.029
  13. E. Esmizadeh, A. A. Yousefi, G. Naderi, Iran. Polym. J. 24 (2015) 1-12. https://doi.org/10.1007/s13726-014-0281-4
  14. Y. Matsuda, J. Tahir-Kheli and W. A. Goddard, J. Phys. Chem. Lett. 1 (2010) 2946-2950. https://doi.org/10.1021/jz100889u
  15. P.C.P. Watts, D.R. Ponnampalam, W.K. Hsu, A. Barnes, B. Chambers, Chem. Phys. Lett. 378 (2003) 609-614. https://doi.org/10.1016/j.cplett.2003.07.002
  16. A. K. V. Kamat, ACS Nano 1 (2007) 13-21. https://doi.org/10.1021/nn700036f
  17. G. D. Lee, C.-Z. Wang, J.J. Yu, E. J. Yoon, N. M. Hwang, and K. M. Ho, Phys. Rev. B 76 (2007) 165413. https://doi.org/10.1103/PhysRevB.76.165413
  18. C. M. Schauerman, J. Alvarenga, B. J. Landi, C. D. Cress, R. P. Raffaelle, Carbon 47 10 (2009) 2431-2435. https://doi.org/10.1016/j.carbon.2009.04.046
  19. P. Nikolaev, O. Gorelik, R. K. Allada, E. Sosa, S. Arepalli and L. Yowell, J. Phys. Chem. C 111 (2007) 17678-17683. https://doi.org/10.1021/jp070149y
  20. E. G. Gamaly and T. W. Ebbesen, Phys. Rev. B 52 (1995) 2083.
  21. Y. L. Li, I. A. Kinloch, A. H. Windle, Science 304 5668 (2004) 276-278. https://doi.org/10.1126/science.1094982
  22. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243 (1995) 49-54. https://doi.org/10.1016/0009-2614(95)00825-O
  23. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74 (1999) 3803. https://doi.org/10.1063/1.124185
  24. J. Ma, J. N. Wang, C. J. Tsai, R. Nussinov, B. Ma, Front. Mater. Sci. 4 (2010) 17-28. https://doi.org/10.1007/s11706-010-0001-8
  25. M. Ismail, Y. Zhao, X.B. Yu, A. Ranjbar, S.X. Dou, Int. J. Hydrog. Energy 36 (2011) 3593-3599. https://doi.org/10.1016/j.ijhydene.2010.12.050
  26. L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu, Carbon 39 3 (2001) 329-335. https://doi.org/10.1016/S0008-6223(00)00126-3
  27. X. He, W. Gao, L. Xie, B. Li, Q. Zhang, S. Lei, J. M. Robinson, E. H. Haroz, S. K. Doorn, W. Wang, R. Vajtai, P. M. Ajayan, W. W. Adams, R. H. Hauge, J. Kono, Nat. Nanotechnol. 11 (2016) 633-638. https://doi.org/10.1038/nnano.2016.44
  28. H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang and Y. Hee Lee, J. Am. Chem. Soc. 129 (25) (2007) 7758-7759. https://doi.org/10.1021/ja0722224
  29. M. P. Siegal, D. L. Overmyer, and P. P. Provencio, Appl. Phys. Lett. 80 (2002) 2171. https://doi.org/10.1063/1.1463204
  30. C. M. Chen, Y. M. Dai, J. G. Huang, J. M. Jehng, Carbon 44 9 (2006) 1808-1820. https://doi.org/10.1016/j.carbon.2005.12.043
  31. Y. H. Yun, V. Shanov, Y. Tu, S. Subramaniam and M. J. Schulz, J. Phys. Chem. B 110 (47) (2006) 23920-23925. https://doi.org/10.1021/jp057171g
  32. R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, K. K. K. Koziol, D. Roy, G. A. J. Amaratunga and W. I. Milne, Appl. Phys. Lett. 84 (2004) 269. https://doi.org/10.1063/1.1639509
  33. S. Arepalli, P. Nikolaev, O. Gorelik, V. G Hadjiev, W. Holmes, B. Files, L. Yowell, Carbon 42 (2004) 1783-1791. https://doi.org/10.1016/j.carbon.2004.03.038
  34. M. Chen, H. W. Yu, J. H. Chen, H. S. Koo, Diam. Relat. Mater. 16 (2007) 1110-1115. https://doi.org/10.1016/j.diamond.2006.12.061
  35. E. Castillejos, B. Bachiller-Baeza, M. Perez-Cadenas, E. Gallegos-Suarez, I. Rodriguez-Ramos, A. Guerrero-Ruiz, K. Tamargo-Martinez, A. Martinez-Alonso, J.M.D. Tascon, J. Alloy. Compd. 536 (2012) S460-S463. https://doi.org/10.1016/j.jallcom.2011.11.007
  36. A. Heras, A. Colina, J. Lopez-Palacios, A. Kaskela, A. G. Nasibulin, V. Ruiz, E. I. Kauppinen, Electrochem. Commun. 11 (2009) 442-445. https://doi.org/10.1016/j.elecom.2008.12.016
  37. W. Zhang, L. Johnson, S. R. P. Silva, M.K. Lei, Appl. Surf. Sci. 258 (2012) 8209-8213. https://doi.org/10.1016/j.apsusc.2012.05.023
  38. S. Shoji, H. Suzuki, R. P. Zaccaria, Z. Sekkat and S. Kawata, Phys. Rev. B 77 (2008) 153407. https://doi.org/10.1103/PhysRevB.77.153407
  39. K. Okano, I. Noguchi and T. Yamashita, Macromolecules 43 (2010) 5496-5499. https://doi.org/10.1021/ma101004s
  40. J. H. Shin, D. W. Shin, S. P. Patole, J. H. Lee, S. M. Park and J. B. Yoo, J. Phys. D-Appl. Phys. 42 (2009) 4.
  41. A. D. Falco, M. L. Fascio, M. E. Lamanna, M. A. Corcuera, I. Mondragon, G. H. Rubiolo, N. B. D'Accorso, S. Goyanes, Physica B 404 (2009) 2780-2783. https://doi.org/10.1016/j.physb.2009.06.117
  42. P.S. Goh, B.C. Ng, A.F. Ismail, M. Aziz, Y. Hayashi, J. Colloid Interface Sci. 386 (2012) 80-87. https://doi.org/10.1016/j.jcis.2012.07.033
  43. A. Anson, M. Benham, J. Jagiello, M. A. Callejas, A. M. Benito, W. K. Maser, A. Zuttel, P. Sudan and M. T. Martinez, Nanotechnology 15 (2004) 11.
  44. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, Chem. Mater. 19 (18) (2007) 4396-4404. https://doi.org/10.1021/cm0630800
  45. Pillai, S. K. Augustyn, W. G. Rossouw, M. H. McCrindle, Robert, J. Nanosci. Nanotechnol. 8 (2008) 3539-3544. https://doi.org/10.1166/jnn.2008.115
  46. I. Barin, Thermochemical data of pure substances (Third Edition), VCH, New York (1995).