• Title/Summary/Keyword: Annealing process

Search Result 1,580, Processing Time 0.026 seconds

The Effect of Crystallographic and Optical Properties Under Rapid Thermal Annealing Conditions on Amorphous Ga2O3 Deposited Using RF Sputtering System (RF 스퍼터링 시스템을 이용하여 증착한 비정질 Ga2O3 박막의 급속 열처리 조건에 따른 결정성과 광학적 특성 변화)

  • Hyungmin Kim;Sangbin Park;Jeongsoo Hong;Kyunghwan Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.576-581
    • /
    • 2023
  • The Ga2O3 thin films were deposited using an RF sputtering system and the effect of crystallographic and optical properties under rapid thermal annealing conditions on Ga2O3 thin film was evaluated. A rapid thermal annealing method can fabricate a crystalline Ga2O3 thin film which is applied to various fields with a low cost and a high efficiency compared with the conventional post-annealing method. In this study, the Ga2O3 treated at 900℃ for 1 min showed the beta and gamma phases in XRD measurement. In optical properties, the crystalline Ga2O3 represented a high transmittance of more than 80% in the visible region and was calculated with a high optical bandgap energy of 4.58 eV. The beta and gamma phases Ga2O3 can be obtained by adjusting the rapid thermal annealing temperatures, and the various properties such as the optical bandgap energy can be controlled. Moreover, it is expected that crystalline Ga2O3 can be applied to various devices by controlling not only temperature but process time.

Increased Chemical Durability by Annealing of SPEEK Membrane for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지용 SPEEK 막의 어닐링에 의한 화학적 내구성 향상)

  • MI-HWA LEE;DONGGEUN YOO;HYE-RI LEE;IL-CHAI NA;KWONPIL PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.673-681
    • /
    • 2023
  • Hydrocarbon-based polymer membranes to replace perfluorinated polymer membranes are being continuously researched. However, hydrocarbon-based membranes have a problem in that they are less durable than fluorine-based membranes. In this study, we sought to compare the annealing effect to improve the durability of sulfonated poly(ether ether ketone) (SPEEK). After membranes formation, thermogravimetric analysis and tensile strength were measured to compare changes in membranes properties due to annealing. After manufacturing the membrane and electrode assembly (MEA), the initial performance and chemical durability was compared with unit cell operation. During the 24-hour annealing process, the strength increased due to the increase in-S-O-S-crosslinking, and the sulfonic acid group decreased, leading to a decrease in I-V performance. By annealing, the hydrogen permeability was reduced to less than 1/10 of that of the nafion membrane, and as a result, open circuit voltage (OCV) and durability was improved. The SPEEK membranes annealed for 24 hours showed higher durability than the nafion 211 membranes of the same thickness.

Local Laser Annealing in Exchange-Biased Films with Out-of-Plane and In-Plane Magnetic Anisotropy

  • Choi, S.D.;Kim, S.W.;Jin, D.H.;Yun, D.K.;Lee, M.S.;Ahn, J.H.;Joo, H.W.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.66-69
    • /
    • 2006
  • Local magnetization reversal in the exchange-biased NiFe/FeMn and $[Pd/Co]_5/FeMn$ multilayers with in-plane and out-of-plane magnetic anisotropy was achieved by using laser annealing. The local annealed NiFe/FeMn film under the opposite magnetic field shows a magnetoresistance (MR) curve having two symmetric peaks at the positive and negative exchange biasing field (${\pm}H_{ex}$). The intensity of the nucleated MR peak rises as the exposed area extends during the laser annealing process, and the peak disappears under the reverse magnetic field. In the case of [Pd/Co]/FeMn films, the local magnetization reversal increased gradually as the laser power increases. The locally reversed magnetization was restored under the opposite magnetic field.

Characterization of ZnO Thin Films and Ga doped ZnO Thin Films Post Annealing for Transparent Conducting Oxide Application (투명전극 응용을 위한 ZnO박막과 Ga 도핑 된 ZnO박막의 성장 후 열처리에 따른 특성분석)

  • Jang, Jae-Ho;Bae, Hyo-Jun;Lee, Ji-Su;Jung, Kwang-Hyun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.567-571
    • /
    • 2009
  • Polycrystalline ZnO and Ga doped ZnO (GZO) films are deposited on glass substrate by RF magnetron sputtering at room temperature. The characteristics of ZnO and GZO films are investigated with X-ray diffraction measurement, UV-VIS-NIR spectrophotometer $(250{\sim}1200nm)$ and hall measurement. The post-growth thermal treatment of these films is carried out in N2 ambient at $500^{\circ}C$ for 30 min and an hour. ZnO and GZO films have different changing behavior of structural and optical properties by annealing. To use transparent conductive films for solar cell, films should have not only high transmittance but also good electrical property. Although as deposited GZO films have electrical properties than ZnO films, GZO films have not good transmittance properties. Consequently, we succeed that the high transmittance of GZO films is improved by annealing process.

Fabrication of FeCuNi alloy by mechanical alloying followed by consolidation using high-pressure torsion

  • Asghari-Rad, Peyman;Kim, Yongju;Nguyen, Nhung Thi-Cam;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this research, a new medium-entropy alloy with an equiatomic composition of FeCuNi was designed using a phase diagram (CALPHAD) technique. The FeCuNi MEA was produced from pure iron, copper, and nickel powders through mechanical alloying. The alloy powders were consolidated via a high-pressure torsion process to obtain a rigid bulk specimen. Subsequently, annealing treatment at different conditions was conducted on the four turn HPT-processed specimen. The microstructural analysis indicates that an ultrafine-grained microstructure is achieved after post-HPT annealing, and microstructural evolutions at various stages of processing were consistent with the thermodynamic calculations. The results indicate that the post-HPT-annealed microstructure consists of a dual-phase structure with two FCC phases: one rich in Cu and the other rich in Fe and Ni. The kernel average misorientation value decreases with the increase in the annealing time and temperature, indicating the recovery of HPT-induced dislocations.

Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics (Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성)

  • Lee, Woo-Hyun;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

Highly Reliable Trench Gate MOSFET using Hydrogen Annealing (수소 열처리를 이용한 고신뢰성 트렌치 게이트 MOSFET)

  • 김상기;노태문;박일용;이대우;양일석;구진근;김종대
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.212-217
    • /
    • 2002
  • A new technique for highly controllable trench corner rounding at the top and bottom of the trench using pull-back and hydrogen annealing has been developed and investigated. The pull-back process could control the trench corner rounding radius at the top comers of the trench. The silicon migration generated by hydrogen annealing at the trench coiners provided (111) and (311) crystal planes and gave a uniform gate-oxide thickness, resulting in high reliable trench DMOSFETs with highly breakdown voltages and low leakage currents. The breakdown voltage of a trench DMOSFET fabricated using hydrogen annealing was increased by 25% compared with a conventional DMOSFET. The reasonable drain current of 45.3 A was obtained when a gate voltage of 10 V was supplied. The on-resistance of the trench gate DMOSFET fabricated using the trench cell of 45,000 was about 55 m(at a gate voltage of 10 V under a drain current of 5 A.

Recovery of Etching Damage of Etched PZT Thin Film by Inductively Coupled Plasma (유도결합 플라즈마에 의해 식각된 PZT 박막의 식각 Damage 개선)

  • 강명구;김경태;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.551-556
    • /
    • 2001
  • In this work, the recovery of etching damage in the etched PZT thin film with $O_2$ annealing has been studied. The PZT thin films were etched as a function of Cl$_2$/Ar and additive CF$_4$ into Cl$_2$(80%) /Ar(20%). the etch rates of PZT thin films were 1600$\AA$/min at Cl$_2$(80%)/Ar(20%) and 1970 $\AA$/min at 30% additive Cf$_4$ into Cl$_2$(80%)/Ar(20%). In order to recover the characteristics of etched PZT thin films, the etched PZT thin films were annealed in $O_2$ atmosphere at various temperatures. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ annealing process. The improvement of ferroelectric behavior is consistent with the increase of the (100) and (200) PZT phase revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensities of Pb-O, Zr-O and Ti-O peak increase and the chemical residue peak is reduced by $O_2$ annealing. From the atomic force microscopy (AFM) images. it shows that the surface morphology of re-annealed PZT thin films after etching is improved.

  • PDF

Suppression of Macrostep Formation Using Damage Relaxation Process in Implanted SiC Wafer (SiC 웨이퍼의 이온 주입 손상 회복을 통한 Macrostep 형성 억제)

  • Song, G.H.;Kim, N.K.;Bahng, W.;Kim, S.C.;Seo, K.S.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.346-349
    • /
    • 2002
  • High Power and high dose ion implantation is essentially needed to make power MOSFET devices based on SiC wafers, because the diffusivities of the impurities such as Al, N, p, B in SiC crystal are very low. In addition, it is needed high temperature annealing for electrical activation of the implanted species. Due to the very high annealing temperature, the surface morphology after electrical activation annealing becomes very rough. We have found the different surface morphologies between implanted and unimplanted region. The unimplanted region showed smoother surface morphology It implies that the damage induced by high energy ion implantation affects the roughening mechanism. Some parts of Si-C bonding are broken in the damaged layer, s\ulcorner the surface migration and sublimation become easy. Therefore the macrostep formation will be promoted. N-type 4H-SiC wafers, which were Al ion implanted at acceleration energy ranged from 30kev to 360kev, were activated at 1600$^{\circ}C$ for 30min. The pre-activation annealing for damage relaxation was performed at 1100-1500$^{\circ}C$ for 30min. The surface morphologies of pre-activation annealed and activation annealed were characterized by atomic force microscopy(AFM).

  • PDF

진공석영 전기로에서 열처리한 $CuInS_2$ 박막특성연구

  • Yang, Hyeon-Hun;Lee, Seok-Ho;Kim, Yeong-Jun;Na, Gil-Ju;Baek, Su-Ung;Han, Chang-Jun;Kim, Han-Ul;So, Sun-Yeol;Park, Gye-Chun;Lee, Jin;Jeong, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.17-17
    • /
    • 2010
  • Polycrystalline $CuInS_2$ thin films were performed from S/In/Cu Stacked elemental layer(SEL) method with post annealing. In thin method, the thin films were annealed in Vacuum of $10^{-3}$ torr or in S ambient. $CuInS_2$ thin films were manufctured by using the evaporation and the annealing with vacuum quartz furnace of sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate the annealing temperature and characteristics thereof were investigated. The physical properties of the thin film were investigated under various fabrication conditions including the substrate temperature annealing time by XRD, FE-SEM, and Hall measurement system.

  • PDF