DOI QR코드

DOI QR Code

Fabrication of FeCuNi alloy by mechanical alloying followed by consolidation using high-pressure torsion

  • Asghari-Rad, Peyman (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Yongju (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Nguyen, Nhung Thi-Cam (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2020.02.05
  • Accepted : 2020.02.20
  • Published : 2020.02.28

Abstract

In this research, a new medium-entropy alloy with an equiatomic composition of FeCuNi was designed using a phase diagram (CALPHAD) technique. The FeCuNi MEA was produced from pure iron, copper, and nickel powders through mechanical alloying. The alloy powders were consolidated via a high-pressure torsion process to obtain a rigid bulk specimen. Subsequently, annealing treatment at different conditions was conducted on the four turn HPT-processed specimen. The microstructural analysis indicates that an ultrafine-grained microstructure is achieved after post-HPT annealing, and microstructural evolutions at various stages of processing were consistent with the thermodynamic calculations. The results indicate that the post-HPT-annealed microstructure consists of a dual-phase structure with two FCC phases: one rich in Cu and the other rich in Fe and Ni. The kernel average misorientation value decreases with the increase in the annealing time and temperature, indicating the recovery of HPT-induced dislocations.

Keywords

References

  1. A. Shafiee, M. Nili-Ahmadabadi, H. S. Kim and M. Jahazi: Met. Mater. Int., (2019).
  2. A. Poulia, E. Georgatis and A. Karantzalis: Met. Mater. Int., 25 (2019) 1529. https://doi.org/10.1007/s12540-019-00283-6
  3. X. Chen, D. Gao, J. X. Hu, Y. Liu and C. P. Tang: Met. Mater. Int., 25 (2019) 1135. https://doi.org/10.1007/s12540-019-00282-7
  4. P. Asghari-Rad, P. Sathiyamoorthi, J. W. Bae, J. Moon, J. M. Park, A. Zargaran and H. S. Kim: Mater. Sci. Eng. A, 744 (2018) 610.
  5. N. T. C. Nguyen, J. Moon, P. Sathiyamoorthi, P. Asghari-Rad, G. H. Kim, C. S. Lee and H. S. Kim: Mater. Sci. Eng. A, 764 (2019) 138198. https://doi.org/10.1016/j.msea.2019.138198
  6. P. Asghari-Rad, P. Sathiyamoorthi, J. W. Bae, H. Shahmir, A. Zargaran and H. S. Kim: Adv. Eng. Mater., 22 (2020) 1900587. https://doi.org/10.1002/adem.201900587
  7. P. Sathiyamoorthi, P. Asghari-Rad, J. M. Park, J. Moon, J. W. Bae, A. Zargaran and H. S. Kim: Mater. Sci. Eng. A, 766 (2019) 138372. https://doi.org/10.1016/j.msea.2019.138372
  8. M. J. Jang, H. Kwak, Y. W. Lee, Y. Jeong, J. Choi, Y. H. Jo, W. M. Choi, H. J. Sung, E. Y. Yoon, S. Praveen, S. Lee, B. J. Lee, M. I. A. El Aal and H. S. Kim: Met. Mater. Int., 25 (2019) 277. https://doi.org/10.1007/s12540-018-0184-6
  9. P. Sathiyamoorthi, J. M. Park, J. Moon, J. W. Bae, P. Asghari-Rad, A. Zargaran and H. S. Kim: Materialia, 8 (2019) 100442. https://doi.org/10.1016/j.mtla.2019.100442
  10. L. Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzel, A. Tarasek, M. Kot and M. Szlezynger: Met. Mater. Int., 25 (2019) 930. https://doi.org/10.1007/s12540-018-00236-5
  11. M. S. El-Eskandarany: William Andrew Publ., Norwich, NY, USA (2001).
  12. M. M. Castro, P. H. R. Pereira, A. Isaac, T. G. Langdon and R. B. Figueiredo: Adv. Eng. Mater., (2019).
  13. I. V. Alexandrov, R. K. Islamgaliev, R. Z. Valiev, Y. T. Zhu and T. C. Lowe: Metall. Mater. Trans. A, 29 (1998) 2253. https://doi.org/10.1007/s11661-998-0103-4
  14. S. Praveen, J. W. Bae, P. Asghari-Rad, J. M. Park and H. S. Kim: Mater. Sci. Eng. A, 735 (2018) 394. https://doi.org/10.1016/j.msea.2018.08.079
  15. P. Sathiyamoorthi, J. Moon, J. W. Bae, P. Asghari-Rad and H. S. Kim: Scr. Mater., 163 (2019) 152. https://doi.org/10.1016/j.scriptamat.2019.01.016
  16. S. Praveen, J. W. Bae, P. Asghari-Rad, J. M. Park and H. S. Kim: Mater. Sci. Eng. A, 734 (2018) 338. https://doi.org/10.1016/j.msea.2018.07.107
  17. P. Asghari-Rad, P. Sathiyamoorthi, N. T. C. Nguyen, J. W. Bae, H. Shahmir and H. S. Kim: Mater. Sci. Eng. A, 771 (2020) 138604. https://doi.org/10.1016/j.msea.2019.138604
  18. P. Sathiyamoorthi, P. Asghari-Rad, J. W. Bae and H. S. Kim: Intermetallics, 113 (2019) 106578. https://doi.org/10.1016/j.intermet.2019.106578
  19. P. Asghari-Rad, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein Nedjad and S. Koldorf: Adv. Eng. Mater., 19 (2017) 1600663. https://doi.org/10.1002/adem.201600663
  20. P. Sathiyamoorthi, J. W. Bae, P. Asghari-Rad, J. M. Park, J. G. Kim and H. S. Kim: Entropy, 20 (2018) 849. https://doi.org/10.3390/e20110849
  21. K. G. Chin, H. J. Lee, J. H. Kwak, J. Y. Kang and B. J. Lee: J. Alloys Compd., 505 (2010) 217. https://doi.org/10.1016/j.jallcom.2010.06.032
  22. W. M. Choi, S. Jung, Y. H. Jo, S. Lee and B. J. Lee: Met. Mater. Int., 23 (2017) 839. https://doi.org/10.1007/s12540-017-6701-1
  23. T. Raghu, R. Sundaresan, P. Ramakrishnan and T. R. R. Mohan: Mater. Sci. Eng. A, 304-306 (2001) 438. https://doi.org/10.1016/S0921-5093(00)01444-1
  24. S. B. Li, J. X. Xie and Z. Y. Zhao: Mater. Sci. Technol., 20 (2004) 1345. https://doi.org/10.1179/026708304225017364