• Title/Summary/Keyword: Annealing process

Search Result 1,589, Processing Time 0.03 seconds

In-situ Observations of Gas Phase Dynamics During Graphene Growth Using Solid-State Carbon Sources

  • Kwon, Tae-Yang;Kwak, Jinsung;Chu, Jae Hwan;Choi, Jae-Kyung;Lee, Mi-Sun;Kim, Sung Youb;Shin, Hyung-Joon;Park, Kibog;Park, Jang-Ung;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.131-131
    • /
    • 2013
  • A single-layer graphene has been uniformly grown on a Cu surface at elevated temperatures by thermally processing a poly(methyl methacrylate) (PMMA) film in a rapid thermal annealing (RTA) system under vacuum. The detailed chemistry of the transition from solid-state carbon to graphene on the catalytic Cu surface was investigated by performing in-situ residual gas analysis while PMMA/Cu-foil samples being heated, in conjunction with interrupted growth studies to reconstruct ex-situ the heating process. The data clearly show that the formation of graphene occurs with hydrocarbon molecules vaporized from PMMA, such as methane and/or methyl radicals, as precursors rather than by the direct graphitization of solid-state carbon. We also found that the temperature for vaporizing hydrocarbon molecules from PMMA and the length of time the gaseous hydrocarbon atmosphere is maintained, which are dependent on both the heating temperature profile and the amount of a solid carbon feedstock are the dominant factors to determine the crystalline quality of the resulting graphene film. Under optimal growth conditions, the PMMA-derived graphene was found to have a carrier (hole) mobility as high as ~2,700 cm2V-1s-1 at room temperature, superior to common graphene converted from solid carbon.

  • PDF

Studies on the Interfacial Reaction between electroplated Eutectic Pb/Sn Flip-Chip Solder Bump and UBM(Under Bump Metallurgy) (전해 도금법을 이용한 공정 납-주석 플립 칩 솔더 범프와 UBM(Under Bump Metallurgy) 계면반응에 관한 연구)

  • Jang, Se-Yeong;Baek, Gyeong-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.288-294
    • /
    • 1999
  • In the flip chip interconnection using solder bump, the Under Bump Metallurgy (UBM) is required to perform multiple functions in its conversion of an aluminum bond pad to a solderable surface. In this study, various UBM systems such as $Al 1\mu\textrm{m} / Ti 0.2\mu\textrm{m} / Cu 5\mu\textrm{m}, Al 1\mu\textrm{m} / Ti 0.2\mu\textrm{m} / Cu 1\mu\textrm{m}, al 1\mu\textrm{m}/Ni 0.2\mu\textrm{m} / Cu 1\mu\textrm{m} and Al 1\mu\textrm{m}/Pd 0.2\mu\textrm{m} / Cu 1\mu\textrm{m}$ for flip chip interconnection using the low melting point eutectic 63Sn-37Pb solder were investigated and compared to their metallurgical properties. $100\mu\textrm{m}$ size bumps were prepared for using an electroplating process. The effects of the number of reflows and aging time on the growth of intermetallic compounds(IMC) were investigated. $Cu_6Sn_5$ and $Cu_3Sn$ IMC were abserved after aging treatment in the UBM system with thick coper $(Al 1\mu\textrm{m}/Ti 0.2\mu\textrm{m}/Cu 5\mu\textrm{m})$. However only the $Cu_6Sn_5$ was detected in the UBM system with $1\mu\textrm{m}$ thick copper even after 2 reflow and 7 day aging at $150^{\circ}C$. Complete Cu consumption by Cu-Sn IMC growth gives rise to a direct contact between solder inner layer such as Ti, Ni and Pd, and hence to possibly cause reactions between two of them. In this study, however, only for the Pd case, IMC of PdSn. was observed by Cu consumption. UBM interfacial reactions with s이der affected the adhesion strength ot s이der balls after s이der reflow and annealing treatment.

  • PDF

Study on Nucleation and Evolution Process of Ge Nano-islands on Si(001) Using Atomic Force Microscopy (AFM을 이용한 Si (001) 표면에 Ge 나노점의 형성과 성장과정에 관한 연구)

  • Park, J.S.;Lee, S.H.;Choia, M.S.;Song, D.S.;Leec, S.S.;Kwak, D.W.;Kim, D.H.;Yang, W.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • The nucleation and evolution process of Ge nano-islands on Si(001) surfaces grown by chemical vapor deposition have been explored using atomic force microscopy (AFM). The Ge nano-islands are grown by exposing the substrates to a mixture of gasses GeH4 and H2 at pressure of 0.1-0.5Torr and temperatures of $600-650^{\circ}C$. The effect of growth conditions such as temperature, Ge thickness, annealing time on the shape, size, number density, and surface distribution was investigated. For Ge deposition greater than ${\sim}5$ monolayer (ML) with a growth rate of ${\sim}0.1ML/sec$ at $600^{\circ}C$, we observed island nucleation on the surface indicating the transition from strained layer to island structure. Further deposition of Ge led to shape transition from initial pyramid and hut to dome and superdome structure. The lateral average size of the islands increased from ${\sim}20nm$ to ${\sim}310nm$ while the number density decreased from $4{\times}10^{18}$ to $5{\times}10^8cm^{-2}$ during the shape transition process. In contrast, for the samples grown at a relatively higher temperature of $650^{\circ}C$ the morphology of the islands showed that the dome shape is dominant over the pyramid shape. The further deposition of Ge led to transition from the dome to the superdome shape. The evolution of shape, size, and surface distribution is related to energy minimization of the islands and surface diffusion of Ge adatoms. In particular, we found that the initially nucleated islands did not grow through long-range interaction between whole islands on the surface but via local interaction between the neighbor islands by investigation of the inter-islands distance.

Bottom electrode optimization for the applications of ferroelectric memory device (강유전체 기억소자 응용을 위한 하부전극 최적화 연구)

  • Jung, S.M.;Choi, Y.S.;Lim, D.G.;Park, Y.;Song, J.T.;Yi, J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.599-604
    • /
    • 1998
  • We have investigated Pt and $RuO_2$ as a bottom electrode for ferroelectric capacitor applications. The bottom electrodes were prepared by using an RF magnetron sputtering method. Some of the investigated parameters were a substrate temperature, gas flow rate, RF power for the film growth, and post annealing effect. The substrate temperature strongly influenced the surface morphology and resistivity of the bottom electrodes as well as the film crystallographic structure. XRD results on Pt films showed a mixed phase of (111) and (200) peak for the substrate temperature ranged from RT to $200^{\circ}C$, and a preferred (111) orientation for $300^{\circ}C$. From the XRD and AFM results, we recommend the substrate temperature of $300^{\circ}C$ and RF power 80W for the Pt bottom electrode growth. With the variation of an oxygen partial pressure from 0 to 50%, we learned that only Ru metal was grown with 0~5% of $O_2$ gas, mixed phase of Ru and $RuO_2$ for $O_ 2$ partial pressure between 10~40%, and a pure $RuO_2$ phase with $O_2$ partial pressure of 50%. This result indicates that a double layer of $RuO_2/Ru$ can be grown in a process with the modulation of gas flow rate. Double layer structure is expected to reduce the fatigue problem while keeping a low electrical resistivity. As post anneal temperature was increased from RT to $700^{\circ}C$, the resistivity of Pt and $RuO_2$ was decreased linearly. This paper presents the optimized process conditions of the bottom electrodes for memory device applications.

  • PDF

The Effective Resonance of Caves & Records of a Cave Concert (동굴의 자연음향 효과, 그리고 음악회장 운영사례)

  • Hyun, Haeng-Bok
    • Journal of the Speleological Society of Korea
    • /
    • no.95
    • /
    • pp.35-49
    • /
    • 2009
  • Ever since the beginning of time, caves not only have offered a place to live for humans but they have also been used as cultural spaces. That is, in the event of making some sounds in a location within the cave, the sound that is created is greatly magnified and sounds out as if it is being amplified from a giant megaphone. This, as we well know it, is known as the resonance effect. Here, the cave itself appears to function as a massive wind instrument. Especially in cases like the Altamira Cave (Spain) where cave paintings were found, the point where the cave drawings were found has commonalities in that it is a wide space and that it is usually discovered together with flutes and drums that are made with mammoth bones. We need to focus on this point. We can infer from these facts that the prehistoric people have carried out cultural activities along with their incantation rituals within those caves. In the meantime, amongst the Korean traditional arts, in the case of pansori which is a representative vocal genre, there have been examples where caves were used as practicing locations for those people who are training to perfect their singing. This is known as toguldoggong(土窟獨功) which literally means 'obtaining one's own art by oneself in the earth cave by practicing incessantly'. This process along with pokpodoggong (瀑布獨功) (same as above except that the location is by the waterfall) is the final training stage in order to become a recognized virtuoso on the part of the apprentice. This could be compared to the final annealing and finishing process of producing a metalwork. This has been a long tradition followed by most Korean traditional artists in order to perfect their sound which is harmonious with nature within natural surroundings. By honing in on this point, I have come to think about this matter repeatedly while coaching the university students in vocal singing. In short, I came to the conclusion that "the making of natural sounds will be obtained naturally within natural surroundings like caves!" Consequently, The Society for Studying Cave Sounds was inaugurated on January 1992 along with some of my students. We made use of times like vacations to go around exploring caves all over Jeju and carried out investigations of sounds along with cave exploration on an experimental basis. After 5 years, in September of 1997, we were able to host the first ever cave concert domestically at the Whale Nostril Cave(東岸鯨窟) on Wu-do. After that, we have been hosting the cave concert once every year. We have achieved a record of a total of 14 cave concerts until 2009 of this year. Out of these, 2 were held in Seokhwaeam Cave in Kangwon Province, another two were held in Manjang Cave which is a lava cave, and the remaining 10 were held in the Whale Nostril Cave of Wu-do. Along with that, I have carried out a special recording for the production of a cave music CD in May of 1999. This paper was written and organized by using the main materials that were derived from the experiences of using caves as concert halls in the past. It is hoped that this cave concert will offer a very unique experience to tourists who come to Jeju every year and give them the best possible superior natural sound effect that only Jeju caves can offer.

Separation of Ferrous Materials from Municipal Solid waste Incineration Bottom Ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 ferrous material의 분리(分離) 특성(特性))

  • Um, Nam-Il;Han, Gi-Chun;You, Kwang-Suk;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.19-26
    • /
    • 2007
  • The bottom ash of municipal solid waste incineration generated during incineration of municipal solid waste in metropolitan area consists of ceramics, glasses, ferrous materials, combustible materials and food waste and so on. Although the ferrous material was separated by the magnetic separation before the incineration process, of which content accounts for about $3{\sim}11%$ in bottom ash. The formation of a $Fe_3O_4-Fe_2O_3$ double layer(similar to pure Fe) on the iron surface was found during air-annealing in the incinerator at $1000^{\circ}C$. A strong thermal shock, such as that takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products and it existed as $Fe_2O_3,\;Fe_3O_4\;and\;FeS_2$. So, many problems could occur in the use of bottom ash as an aggregate substitutes in construction field. Therefore, in this study, the separation of ferrous materials from municipal solid waste incineration bottom ash was investigated. In the result, the ferrous product(such as $Fe_2O_3,\;Fe_3O_4,\;FeS_2$ and iron) by magnetic separator at 3800 gauss per total bottom ash(w/w.%) accounted for about 18.7%, and 87.7% of the ferrous product was in the size over 1.18 mm. Also the iron per total bottom ash accounted for about 3.8% and the majority of it was in the size over 1.18 mm.

Quality Changes of Fresh-Cut Leafy and Condiment Vegetables during Refrigerated Storage (신선편이 엽채류 및 조미채소류의 냉장저장 중 품질변화)

  • Kim, Su-Jin;Sun, Shih-Hui;Kim, Gi-Chang;Kim, Haeng-Ran;Yoon, Ki-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1141-1149
    • /
    • 2011
  • The objective of this study was to analyze quality changes during storage of fresh-cut produce (leafy vegetables and condiment vegetables) as a function of packaging and storage temperature. Fresh-cut produce was washed using a three step cleaning process and was packed in vacuum packaging (green onion, hot pepper, onion, baechu) and perforated film packaging (buchu and perilla leaf). The effects of packaging method and storage temperature on quality of fresh-cut produce were determined by analyzing total plate counts, E. coli, coliform groups, moisture content, pH, Aw, surface color, and exterior quality during storage at 4 and 10$^{\circ}C$. According to the results, surface color change and microbial growth were delayed during storage at 4$^{\circ}C$. Additionally, E. coli was not detected during storage. Generally, moisture content decreased in the perforated film packaging. Changes in surface quality such as skin browning, softening of tissue and chlorosis at 4$^{\circ}C$ were inhibited, whereas rapid vacuum annealing and changes in color and flavor were observed in the sample stored at 10$^{\circ}C$. The result indicated that overall quality of the fresh-cut produce at 4$^{\circ}C$ was well maintained. The perforation in packing materials did not significantly increase the number of microorganisms on buchu and perilla leaf. The proper packaging methods and temperature may beneficial effect on microbial safety, quality and thus result in longer shelf-life fresh-cut vegetables during distribution.

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF