• Title/Summary/Keyword: Anmok beach

Search Result 10, Processing Time 0.02 seconds

Analysis of Wave and Current in Anmok Coastal Waters (안목해안의 파랑과 흐름 분석)

  • Lim, Hak-Soo;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.7-19
    • /
    • 2017
  • In this study, waves and currents observed by acoustic AWAC, VECTOR and Aquadopp Profiler in Anmok coastal waters were analysed to account for the variability of wave and current and to understand the mechanism of sediment transport generated by wave-induced current in the surf-zone. The monthly variation of wave and residual currents were analysed and processed with long-term observed AWAC data at station W1, located at the water depth of about 18m measured during from February 2015 to September 2016. Wave-induced currents were also analysed with intensive field measurements such as wave, current, suspended sediment, and bathymetry data observed at the surf-zone during in winter and summer. The statistical result of wave data shows that high waves coming from NNE and NE in winter (DEC-FEB) are dominant due to strong winds from NE. But in the other season waves coming from NE and ENE are prevalent due to the seasonal winds from E and SE. The residual currents with southeastern direction parallel to the shoreline are dominant throughout a year except in winter showing in opposite direction. The speed of ebb-dominant southeastern residual currents decreasing from surface to the bottom is strong in summer and fall but weak in winter and spring. By analysing wave-induced current, we found that cross-shore current were generated by swell waves mainly in winter with incoming wave direction about $45^{\circ}$ normal to the shoreline. Depending on the direction of incoming waves, longshore currents in the surf-zone were separated to southeastern and northwestern flows in winter and summer respectively. The variation of observed currents near crescentic bars in the surf-zone shows different direction of longshore and cross-shore currents depending on incoming waves implying to the reason of beach erosion generating the beach cusp and sandbar migration during high waves at Anmok.

Assessment of Water Piling-up behind a Submerged Breakwater during Storm Events (단기 태·폭풍 기인 잠제 배후의 Piling-up 현상 평가)

  • Son, Donghwi;Yoo, Jeseon;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.203-210
    • /
    • 2018
  • It is generally known that submerged breakwaters can reduce the incoming wave energy without disturbing the beach scenery. However, a submerged breakwater is also able to cause a setup of the sea level in the protected area which is also called as water piling-up. Since the piling-up can result in longshore currents, sediment transports, and unexpected beach erosion, understanding about the piling-up process is required prior to designing the nearshore structures. In this study, the water piling-up behind a submerged breakwater is assessed in the time of storm events. For the study area, Anmok beach in Gyeonso-dong, Gangwon-do is selected. 1-year, 5-year, 10-year, and 50-year return-values were derived from Peaks-Over-Threshold(POT) method and those are applied as offshore boundary conditions for the numerical simulation. The numerical results of the piling-up were assessed with regard to the wave steepness and the height of the submerged breakwater. With increase of both significant wave height and the height of the submerged breakwater, the piling-up parameter is also increased which can lead to erosion of dry beach behind the structure.

Analysis of Seasonal Morphodynamic Patterns using Delft3D in Anmok Coast (수치모델링을 통한 안목해안에서 계절에 따른 지형변동 패턴 분석)

  • Kim, Mujong;Son, Donghwi;Yoo, Jeseon
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • In recent years, coastal areas have been suffering from coastal erosion, such as destruction of coastal roads and military facilities. In this study, the Delft3D model was used to analyze the sediment transport pattern due to seasonal characteristics of summer and winter waves in Anmok beach of the East coast. Typhoon and high waves are mainly are coming from ENE direction in the summer season and the flows occur in the northward. In winter, high waves are incident from NE and the flows occur in the southward. These seasonal patterns were simulated by using Delft3D model. As for model input, reanalysis wave data of the past 38 years were used, and the seasonal patterns were analyzed by dividing the whole year into summer and winter season. The grid point of the 38 year reanalysis data is far from the Anmok beach, so the three model grid systems (wide grid -> intermediate grid -> detailed grid) are constructed. Most of the flows in the NW direction occurred in summer, but erosion and deposition was alternated along the coastline. In winter, sediment was deposited near Gangnung Port due to the southern flow and the southern port. Strong winter waves compared to summer tend to cause deposition around Gangnung Port throughout the year.

Estimation of Longshore Sediment Transport Rates from Shoreline Changes (해안선 변화로부터 연안표사량의 추정)

  • Jung Ji Sun;Lee Jung Lyul;Kim In Ho;Kweon Hyuck Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.258-267
    • /
    • 2004
  • Coastal and harbor structures, which are constructed for the beach protection and coastal zone development, often cause the severe beach erosion problem resulted from changes of longshore sediment transport. In this study, we present a new methodology to estimate the longshore sediment transport rates using the measured data of beach profiles or shorelines. The methods is applied for the prediction of longshore sediment transport rates along Kailua beach, Hawaii and shorelines in the vicinity of Anmok Harbor, Korea.

Nearshore Sediment Transport in Vicinity of Anmok Harbor, East Coast of Korea. (동해 안목항 주변 연안 토사이동)

  • 김인호;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.108-119
    • /
    • 2004
  • The breakwater extension at Anmok Harbor has resulted in erosional stresses along the wide range of shorelines immediately south of the harbor. In this study, therefore, the downdrift affects caused by the breakwater extension are investigated through both analytical and numerical approaches. In addition, this study stresses the need of monitoring and analysis system for the effective integrated coastal zone management and shows through the case study of Anmok Harbor how the numerical experiments are accomplished for the coastal zone management. The numerical model system, which predicts the seabed changes obtained from the difference between the rates of sediment pickup and settling due to gravity, is combined with the wave, wave-induced currents, and suspended sediment transport models. A new relationship between the near-bed concentration and the depth-mean concentration, which is required in estimating the settling rates. is presented by analyzing the vertical structure of concentration.

Surface current measurements using lagrangian Drifters in Anmok (소형 표류부이를 이용한 안목해안 표층 연안류 관측)

  • Lim, Hak Soo;Kim, Mujong;Shim, Jae-Seol
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.spc
    • /
    • pp.245-253
    • /
    • 2017
  • In this study, surface currents measured by small lagrangian GPS drifters (Aquadrifter) in Anmok coastal waters were analysed to account for the variability of nearshore surface current and wave-induced current to understand sediment transport mechanism near the crescentic bars in the surf-zone and near Kangneung breakwater and submerged breakwater in Anmok. The 8 times lagrangian drifter experiments were conducted mostly during in 2nd, 3rd, 4th intensive measurements in winter, summer, and spring seasons with long-term wave observation at the station W1. The analysed surface currents near the breakwaters in Anmok show that wave-induced currents at the middle of the submerged breakwater were separated and flowed toward the shoreline but offshore currents were dominant through the channels between the breakwaters. The longshore currents near the shoreline were flowed to the northwest (southeast) depending on the incoming waves from ENE (NNE). The surface nearshore offshore currents were generated mostly by waves and winds in case of high and low wave energy environments. Using the small-size lagrangian surface drifter experiments, we successfully measured longshore and offshore wave-induced currents in the surf-zone and near submerged breakwater close to Kangneung breakwater. The drifter experiment results show the availability of direct observation of nearshore surface currents to understand the mechanism of sediment transport analysing observed wave-induced current and ebb-current in the surf-zone generated by incoming waves and local winds.

Variations of Sediment Textural Parameters and Topography around Gangneung Harbor after the Completion of Harbor Construction (강릉항 완공 후 주변해역의 퇴적물 조직변수와 지형의 변화)

  • Oh, Jae-Kyung;Bang, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.120-135
    • /
    • 2013
  • To investigate the changes in depositional environment around Gangneung Harbor, we analyzed the surface sediment textural parameters and topography data collected five times from February 2007 to February 2009. In the study area, sediments were mainly composed of sand and its sediment size became finer at offshore sites. During summer time, however, the sand grains became coarser than winter season near Namhangjin Beach, inside the harbor, and offshore areas. On the other hand, the grain size of Anmok Beach showed a gradual finer trend with time. Compared with the previous studies conducted before the completion of Gangneung Harbor construction, the mean grain size became finer on Anmok Beach, while it was coarser on Namhangjin Beach. The bathymetric changes observed over a 2-year period showed predominant erosion in the area of 5 to 10 m water depths and deposition in 2 to 5 m water depths. The shallower area less than 2 m water depths showed an alternating trend and yet slightly more dominant erosion process. The sediment textural parameters and the distribution of erosion and deposition have changed continuously. Results imply that such changes show long-term trends as well as seasonal variations in which the trend may have been formed after the completion of Gangneung Harbor construction.

Variations of Grain Textural Parameters of Beaches by Coast Development at East Coast Korea Peninsula (연안 개발에 의한 동해 해빈 퇴적물의 입자 조직 특성의 변화)

  • Oh, Jea-Kyung;Jeong, Sun-Mi;Cho, Yong-Goo
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.914-924
    • /
    • 2007
  • This study is to compare differences in the depositional environments of natural beaches with those of beaches developed with artificial structures in the East Coast of Korea. Naksan-Osan beaches were selected for the examination of natural beaches and Anmok-Yumjun beaches for that of developed beaches. The study was performed on the foreshores and backshores of the selected beaches, and was based on the field research during the flood period of year 2004 and the dry period of year 2005. In Naksan-Osan beaches, pain size is fuel and sorting is better from northern coast to southern coast. Furthermore, sediment undergoes changes regularly and seasonal variations are small. But in Anmok-Yumjun beaches, grain size is coarser and sorting is worse than in Naksan-Osan beaches, showing irregular tendencies. The characteristic features of the two beaches would be effected by longshore currents which change along the type of coast line and have an effect on sediment. Especially, long shore currents interrupted by artificial structures in Anmok-Yumjun beaches may cause sedimental environment changes. In Anmok-Yumjun beaches, harbor expansions will be continued, and thus more changes are expected to occur in the beaches.

A Research of Coastline Deformation with an Aerial Photo

  • Kim, Kam-Lae;Kim, Hak-Joon;Jeon, Ho-Won
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The purpose of this study is to make out a history of the coastline deformation with annual aerial photos of the target area and to suggest an efficient method for interpreting the coastline deformation. First, there were difficulties in obtaining annual aerial photos of an identical area as well as collecting periodical datum because of too much change of the real area during more than 27 years. Besides the past aerial photo is inferior to the latest one in quality. So there is nothing but to exclude an accuracy evaluation of the ortho photo. Taken into account the extent of the coastline change for 27 years is more than 10M and the all errors of the ortho image is included in this extent, both an accuracy and an error are ignored. The result of this study show that the coastline in the sea area of Namhangjin maintain advanced forward the ocean and keeps on moving with maintaining fairly wider shape of balance beach. Also The coastline deformation off l㎞ from the estuary is greatly irregular, which means the erosion of the sea in this area is in progress. The latest data being the aerial photo in 1996, it is difficult to find out the current conditions of a coastal erosion. However, considered the construction of a breakwater in Anmok Harbor is going on, the beach erosion becomes more accelerative recently. The aerial photos of the present Namhangjin's situation will make it possible to understand the history of the coastline change more accurately.

  • PDF

Shipborne Mobile LiDAR(Light Detection and Ranging) System for the Monitoring of Coastal Changes (해안지형 모니터링을 위한 해상모바일라이다 지형 측정 시스템 구축)

  • Kim, ChangHwan;Kim, HyunWook;Kang, GilMo;Kim, GiYoung;Kim, WonHyuck;Park, ChanHong;Do, JongDae;Lee, MyoungHoon;Choi, SoonYoung;Park, HyeonYeong
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land. Regular monitoring of coastal changes is essential at key locations with such volatility. But the survey method of terrestial LiDAR(Light Detection and Ranging) system has much time consuming and many restrictions. For effective monitoring coastal changes, KIOST(Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system, installed in a research vessel, comprised a land based LiDAR(RIEGL LMS-420i), an IMU(MAGUS Inertial+), a RTKGNSS(LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land based LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. We conducted test measurements in the Anmok-Songjung beach around the Gangneung port. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.