• Title/Summary/Keyword: Ankle kinematic

Search Result 159, Processing Time 0.027 seconds

Hemiplegic gait : comparison of kinematic variables related to Bait speed (편마비 보행 :속도에 따른 관절 운동학적 변수 비교)

  • Kwon Young-Shil;Choi Jin-Ho;Jung Byong-Ok;Chae Yun-Won;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.95-102
    • /
    • 1999
  • In hemiplegic gait, walking speed is an important factor to evaluate treatment effect. The purpose of this study was to describe and compare kinematic variables during differant speed hemiplegic gaits. Six hemiplegic patients(47-69 years old) after stroke and age - matched six volunteers in good health(51-61 years old) were studied. The patients were sorted into two groups, depending on their self - speed of walking : fast speed group(3 patients, $0.74\pm0.14m/s$) and slow speed group(3 patients, $0.29\pm0.09m/s)$. The results were following. 1. In the hip joint, the fast group had lower mean value than normal but had similar pattern to normal. The slow group had continuous flexed pattern. 2. In the knee joint, the fast group had similar mean value and pattern to normal. The slow group had continuous flexed pattern. 3. In the ankle joint, the two group had dorsiflexed pattern. The fast group had similar pattern to normal. Thus, the fast group was similar gait pattern to normal.

  • PDF

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait (파워워킹과 일반보행의 운동학적 및 EMG 비교분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Kim, Eun-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

Kinematic Mechanism of Gait on Different Road Conditions in Older Women (보행 지면 상태에 따른 노인의 운동학적 보행 메카니즘)

  • Hah, Chong Ku;Ki, Jae Sug;Jang, Young Kwan;Lee, Eun Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.163-171
    • /
    • 2015
  • The aim of this study was to investigate kinematic mechanism of gait different road conditions(dry vs. oil) in order women. For this study, twenty older women and ten young women participated in this research. twelve infrared cameras were used to collect data. It appeared that the gait strategies of older women were slower velocity and higher CoM than young women. Depending on road conditions, gait velocities of dominant muscle older women on dry surface were faster than dominant sense older women, but those of them were inverse on oil surface. The slip displacement of dominant muscle older women was less than young women, but the slip displacement of dominant sense older women was greater than young women. In case of blind during stance phase on oil surface, the rotational motion of the ankle and knee joints were increased. In conclusion, older women were subjected to self-organization theory and phase shift in dynamic theory.

Lower Extremity Biomechanics while Walking on a Triangle-Shaped Slope (삼각경사면 보행 시 하지 관절 생체역학적 분석)

  • Hong, Yoon No Gregory;Jeong, Jiyoung;Kim, Pankwon;Shin, Choongsoo S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.153-160
    • /
    • 2017
  • Gait analysis has been conducted in various environments, but the biomechanics during the transition from uphill walking to downhill walking have not been reported. The purpose of this study is to investigate the knee and ankle joint kinematics and kinetics during walking on a triangle-shaped slope compared with those during level walking. Kinematic and kinetic data of eighteen participants were obtained using a force plate and motion capture system. The greater peak ankle dorsiflexion angle and moment and the peak knee extension moment were observed (p<0.05) during both uphill and downhill walking on the triangle-shaped slope. In summary, uphill walking on a triangle-shaped slope, which showed a peak knee flexion of more than $50^{\circ}$ with greater peak knee extension moment, could increase the risk of patellofemoral pain syndrome. Downhill walking on a triangle-shaped slope, which involved greater ankle dorsiflexion excursion and peak ankle dorsiflexion, could cause gastrocnemius muscle strain and Achilles tendon overuse injury.

Effects of 12-week Wearing of the Unstable Shoes on the Standing Posture and Gait Mechanics (12주간의 불안정성 신발 착용이 직립 자세 및 보행역학에 미치는 영향)

  • Park, Ki-Ran;An, Song-Yi;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • The purpose of this study was to determine effects of 12-week wearing of unstable shoe on the standing posture and gait mechanics. Nine healthy men were asked to wear the unstable shoes for 12-week and walk for 30 minute everyday. Their standing posture and gait mechanics were measured before and after treatment. Standing posture was measured for each side(anterior, posterior, lateral) for standing position. And gait analysis was measured joint angle of a right lower limb between first right heel contact and second right heel contact. Kinematic data were collected using video camera at 30 frame per seconds. Statistical analysis was paired t-test(p<.05) to compare before training with after that. A head tilt angle was significantly decreased for posterior side(p<.05). The angle of between center of line and surface was significantly decreased at midstance and take off during walking(p<.05). Ankle dorsiflexion significantly increased at heel contact2(p<.05) and ankle plantarflexion significantly increased at midstance and midswing(p<.05). The increase of ankle dorsiflexion showed that our results consisted with previous study. In conclusion, there was not large significant difference in static standing posture but joint angle of lower limb represented many changes with increasing of ankle motion during walking. These were of benefit to body by increasing leg muscle activity but it was necessary for man having a ankle problem to consider. Further studies concerning optimum outsole angle of unstable shoes are necessary.

Effect of Step Height and Visual Feedback on the Lower Limb Kinematics Before and After Landing

  • Jangwhon Yoon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: Landing from a step or stairs is a basic motor skill but high incidence of lateral ankle sprain has been reported during landing with inverted foot. Objects: This study aimed to investigate the effect of landing height and visual feedback on the kinematics of landing and supporting lower limbs before and after the touch down and the ground reaction force(GRF)s. Methods: Eighteen healthy females were voluntarily participated in landing from the lower (20 cm) and the higher (40 cm) steps with and without visual feedback. To minimize the time to plan the movement, the landing side was randomly announced as a starting signal. Effects of the step height, the visual feedback, or the interaction on the landing duration, the kinematic variables and the GRFs at each landing event point were analyzed. Results: With eyes blindfolded, the knee flexion and ankle dorsiflexion on landing side significantly decreased before and after the touch down. However, there was no significant effect of landing height on the anticipatory kinematics on the landing side. After the touch down, the landings from the higher step increased the knee flexion and ankle dorsiflexion on both landing and supporting sides. From the higher steps, the vertical GRF, anterior GRF, and lateral GRF increased. No interaction between step height and visual feedback was significant. Conclusion: Step height and visual feedback affected the landing limb kinematics independently. Visual feedback affected on the landing side while step height altered the supporting side prior to the touch down. After the touch down, the step height had greater influence on the lower limb kinematics and the GRFs than the visual feedback. Findings of this study can contribute to understanding of the injury mechanisms and preventing the lateral ankle sprain.

The Case Study of A Kinematic Analysis of the Right-Straight Punch in Korean National Representative Boxers (복싱 국가대표선수 라이트 스트레이트 펀치 동작의 Kinematic 특성분석-사례연구)

  • Kim, Eui-Hwan;Kim, Jin-Pyo;Lee, Jin-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.293-309
    • /
    • 2003
  • The purpose of this study was to analyze the kinematic variables of the right-straight punch(RSP) in boxing with three-dimensional analysis technical methods. The subjects are boxers who have been playing in national boxing representative team and the RSP is their special favorite technique, The right-straight punches were filmed on 16mm video cameras(30frames/sec.) The kinematic variables were temporal, postural and center of gravity(COG). The mean and the standard deviation of variables have been obtained and used as basic factors for examining characteristics of the RSP by out-boxers. From the data analysis and discussion, the following conclusions have been drawn. 1) Temporal variables It is a significant characteristic that LDJ and KDM s' the amount of elapsed time(EF) needed for both an attack and a defense were similar : ET for stretch-out of attack-arm was $0.52{\pm}0.04\;sec$. and return was $0.54{\pm}0.01\;sec$. Therefore, a defense motion is as important as an attack motion. 2) Posture variables When the subjects performed a RSP, the significant characteristic of the ankle angle was that it wasn't completely returned to the original position after stretching-out. Therefore it is necessary to do supplementary exercises, such as side steps, to move the center of gravity more effectively. The hee angle was not fully stretched either. In regard to the hip angle, it should be rotated with all strength to harmonize with the direction of movement. 3) Center of Gravity(COG) variables When both LDJ and KDM performed a RSP, a significant characteristic was the transformation of sagittal view rather than transverse or frontal views.

Effects of Skill Level and Feet Width on Kinematic and Kinetic Variables during Jump Rope Single Under

  • Jang, Kyeong Hui;Son, Min Ji;Kim, Dae Young;Lee, Myeoung Gon;Kim, You Kyung;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 2017
  • Objective: The purpose of this study was to analyze the effects of skill level and width between feet on kinematic and kinetic variables during jump rope single under with both feet. Method: Fifteen subjects in the skilled group (age: $10.85{\pm}0.40yrs$, height: $142.13{\pm}5.41cm$, weight: $36.97{\pm}6.65kg$) and 15 subjects in the unskilled group (age: $10.85{\pm}0.40yrs$, height: $143.31{\pm}5.54cm$, weight: $40.81{\pm}10.39kg$) participated in this study. Results: Participants in the skilled group minimized the anteroposterior displacement of their center of mass by modifying the width between their feet and decreased the range of motion (ROM) of their trunk in the sagittal plane. The preferred width during the jump rope decreased by 5.61~6.11 cm (32~37%) in comparison to width during static standing. The induced width was increased by 16.44~16.67 cm (82~85%), regardless of skill level. The kinematic variables of the left and right legs of members of the unskilled group were significantly different from those of members in the skilled group regarding the ROM of the hip, knee, and ankle joint. Otherwise, the members of the skilled group were consistent in terms of the kinematic variables of the right and left legs. Conclusion: The preferred width between feet during the jump rope was found to be beneficial for maintaining dynamic stability. The unskilled group exhibited asymmetry in left and right motion within the ranges of motion of the ankle, knee, and hip joints, regardless of the width. Therefore, long-term accurate jump rope motions will contribute to an improvement in the left and right imbalances of the entire body.

Kinematic Analysis of Back Somersault Pike According to Skill Level in Platform Diving

  • Park, Jiho;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.157-164
    • /
    • 2017
  • Objective: The purpose of this study was to investigate kinematic differences in back pike somersault in platform diving according to skill level and to apply the findings to improve performance. Method: Korean divers participating in this study were divided into a skilled group (age: $21.6{\pm}4.16y$, height: $1.68{\pm}0.03m$, weight: $62.0{\pm}3.94kg$, career: $12.6{\pm}5.13y$) and a less-skilled group (age: $20.6{\pm}2.7y$, height: $1.72{\pm}0.05m$, weight: $64.8{\pm}6.76kg$, career: $12.2{\pm}2.49y$) and an independent t-test was performed to analyze differences between groups at the moment of takeoff. Results: The two groups showed significant differences in displacement and velocity of center of mass (COM), takeoff angle, hip joint angle, knee joint angular velocity, and hip joint angular velocity at the takeoff (p<.05), and significant differences in displacement of COM, hip joint, and ankle joint during flight (p<.05). Conclusion: For a successful back pike, the COM should rise quickly in the vertical direction and the hip joint angle and angular velocity should increase. To improve performance, the back pike turn should be practiced on the ground before an attempt on a 10-m platform, to stretch the ankle and knee joints and enable quick flexion of the hip joint when turning in flight.