• 제목/요약/키워드: Anisotropy profile

검색결과 35건 처리시간 0.032초

Study of Ultra-Small Optical Anisotropy Profile of Rubbed Polyimide Film by using Transmission Ellipsometry

  • Lyum, Kyung Hun;Yoon, Hee Kyu;Kim, Sang Jun;An, Sung Hyuck;Kim, Sang Youl
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.156-161
    • /
    • 2014
  • Anisotropy profile of a rubbed polyimide film is investigated using both a modified ultra high precision transmission ellipsometer and the analysis software previously developed to determine the optic axis distribution of discotic liquid crystals in the wide view film. The distorted sinusoidal variation of the ellipsometric constants obtained at an oblique angle of incidence indicates that the optic axis varies from $14.7^{\circ}$ to $40.6^{\circ}$ from the sample plane. The magnitude and distribution of anisotropy is expressed in terms of no, ne, and the cosine-shaped tilt angle distribution of the optic axis in a rubbed polyimide film.

정수압하에서 박판 정방벌지의 변형특성과 불안정에 관한 연구 (A study on the characteristic and instability of the diaphram square bulge under hydraulic pressure)

  • 강대민
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.52-59
    • /
    • 1997
  • Hill's anisotropy theory and isotropy theory under the deformed profile assumed two separate cases(that is circular and ellipitical) are applied to predict the plastic deformation characteristics of bulge, the strain and polar height under instability condition, using thin square diaphragms of stainless steel, mild steel, brass, copper and aluminum. In this study it was found that the pressure-polar height curves, and the polar height-the polar radius of curvature curve, under anisotropy theory and isotropy theory, assuming a circle profile, agree well with the experimental results, and the equivalent strains of the instability condition under anisotropy theory are better good agreement with the experimental results than those of the instability condition under isotropy theory. Beside, FLCo(plane Strain Intercept) obtained by Bethlehem FLC method and standard FLC method (modified) agree well with the experimental result.

  • PDF

Effects of Material Anisotropy on Ultrasonic Beam Propagation: Diffraction and Beam Skew

  • Jeong, Hyun-Jo;Schmerr, W.
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.198-205
    • /
    • 2006
  • The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface playa key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasilongitudinal(qL) beam propagates in the symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.

알루미늄 압출공정에서의 변형이방성에 대한 연구 (Deformation Induced Anisotropy in Profile Extrusion of Aluminium Alloys)

  • 이창희;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.37-41
    • /
    • 2000
  • Extruded Profiles of Aluminum alloys have been widely used as parts and frames in mechanical and construction structures. Nowadays, mechanical processing of extruded Al alloy profiles is often employed for various industrial applications. Especially, the bending process is more and more applied and the process is greatly influenced by the distributed mechanical properties in the extruded profiles. Due to large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropy properties play a great role in the bending process, as a post processing of extruded profiles and errors will be involved when the extruded profiles are treated as isotropic material, ignoring the induced anisotropy in the thin-walled extruded product. In the present work, the anisotropic material change is simulated, as a simplified method, employing Barlats six-component yield criterion in the rigid-plastic finite element method. Finite element computations are carried out for extrusion of a thin-walled part.

  • PDF

알루미늄 판재의 이방성거동 예측을 위한 현상학적 모델과 결정소성학적 모델의 비교연구 (Study on Phenomenological and Crystal Plasticity Models to Predict Anisotropic Behaviors for Aluminum Alloy Sheets)

  • 정완진;윤정환
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.574-580
    • /
    • 2006
  • Anisotropy has an important effect on the strain distribution in aluminum alloy sheet forming, and it is closely related to the thinning and formability of sheet metals. Thus, the anisotropy of the material should be properly considered for the realistic analyses of aluminum sheet forming processes. For this, anisotropy can be approached in two different scales: phenomenological and microstructural (polycrystal) models. Recent anisotropic models (Yld2000-2d; Barlat et al.[1] 2003, Cuitino et al.[2] 1992) were employed in this work. For the simulation using shell element, the method which can impose plane stress condition in the polycrystal model is developed. Lankford values and yield stress ratios are calculated along various directions. As planar anisotropic behavior, a circular cup deep drawing simulation was carried out to compare the phenomenological and microstructure models in terms of earing profile.

나노인덴테이션을 이용한 인체 피질골 골층판의 물성연구 (Mechanical properties on nanoindentation measurements of osteonic lamellae in a human cortical bone)

  • 최환석;송정일;주원경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.527-528
    • /
    • 2006
  • In the proposed research plan, the effects of anisotropic and time-dependent mechanical properties on nanoindentation measurements of osteonic lamellae in a human cortical bone are investigated. The most popular method(Oliver-Pharr method) in nanoindentation data analysis is based on the assumption of elastic isotropy. Since cortical bone has exhibited anisotropy, it is necessary to consider the effects of anisotropy on nanoindentation measurement for cortical bone. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to effects of anisotropy. The mount of error depended on the indentation orientation. The indentation modulus results and were also similar to moduli calculated from mathematical model. The Oliver-Pharr method has been shown to be useful for providing first order approximations in analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

  • PDF

평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향 (Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys)

  • 윤정환;;정관수;양동열;장성기
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

LIDAR를 이용한 대규모 암반 절리면의 거칠기 측정 (Measurement of Joint Roughness in Large-Scale Rock Fracture Using LIDAR)

  • 김치환
    • 터널과지하공간
    • /
    • 제19권1호
    • /
    • pp.52-63
    • /
    • 2009
  • 대규모 암반 절리면의 거칠기를 구하는 여러 가지 방법이 있으나, 길이 10 cm의 절리를 Barton 등이 제안한 표준절리면곡선과 비교하여 절리면 거칠기계수 JRC (joint roughness coefficient)를 결정하고 대규모 절리의 길이에 따라 보정하는 것이 가장 일반적인데, 적합한 표준 절리면곡선을 선택할 때 측정자에 따라 달라자는 경우가 많다. 따라서 대규모 암반 절리면의 거칠기 JRC는 길이에 따른 보정 없이 직접 측정하는 것이 정확할 것이나 측정방법에 한계가 있다. 본 연구에서는 대규모 암반절리를 LIDAR (light detection and ranging)로 스캔하고 절리의 길이 L과 절리면 상의 돌출부(asperity) 높이의 진폭 a를 이용하여 대규모 암반 절리의 거칠기계수 JRC를 구하였다. 그 결과 대규모의 암반 절리면에서도 절리의 길이 증가에 따라 거칠기 계수 JRC가 감소하는 비 정상상태(non-stationary)의 치수효과와 거칠기 측정방향에 따라 절리면 거칠기계수 JRC가 다른 것을 확인하였다.

$SF_6$플라즈마를 이용한 텅스텐 박막의 반응성이온식각에 관한 실험적 연구 (Experimental Study of Reactive Ion Etching of Tungsten Films Using $SF_6$ Plasma)

  • 박상규;서성우;이시우
    • 전자공학회논문지A
    • /
    • 제30A권7호
    • /
    • pp.60-74
    • /
    • 1993
  • Experiments of RIE of tungsten films using SF$_{6}$ plasma were conducted to investigate the effect of process parameters on etch rate, uniformity, anisotropy, and selectivity. As power increased, the etch rate increased. Maximum etch rate was obtained at 200mtorr As interelectrode spacing increased the etch rate increased for P < 200mtorr while it decreased for P> 200mtorr. Etch rate was maximum at 20 sccm gas flow rate. As substrate temperature increased, the etch rate increased and activation energy was 0.046 eV. In addition, maximum etch rate was acquired at 20% $O_{2}$ addition. The etch rate slightly increased when Ar was added up to 20% while it continuously decreased when N$_{2}$ was added. Uniformity got improved as pressure decreased and was less than 4% for P <100mtorr. Mass spectrometer was utilized to analyze gas composition and S and F peaks were observed from XPS analysis with increasing power. The anisotropy was better for smaller power and spacing, and lower pressure and temperature. It improved when CH$_{4}$ was added and anisotropic etch profile was obtained when about 10% $O_{2}$ was added. The selectjvity was better for smaller power larger pressure and spacing, and lower temperature. Especially. low temperature processing was proposed as a novel method to improve the anisotropy and selectivity.

  • PDF

제조조건에 따른 TbFeCo 박막의 산화 (The oxidation of TaFeCo thin films according to the depositio conditions)

  • 문정탁;김명한;이동철
    • 한국재료학회지
    • /
    • 제4권7호
    • /
    • pp.767-774
    • /
    • 1994
  • The TbFeCo thin films were prepared by the magnetron sputtering system to investigate the effect of the base pressure, film thickness and pre sputtering on the oxidation of the films by analyzing the change of matneto optical properties and by AES depth profile. The films prepared by the facing targets sputtering system represented almost constant magneto optical properties independent of the base pressure resulting from the short flight distance of the sputtered particles. Also, the thin TbFeCo films represented better perpendicular anisotropy as the films thickness increased with pre sputtering. However, it was still needed a deposition rate higher than a certain critical deposition rate to obtain a perfect perpendicular anisotropy even at a very high film thickness.

  • PDF