• 제목/요약/키워드: Anisotropic hardening constitutive model

검색결과 33건 처리시간 0.022초

$K_0$조건하 거동에 대한 유효응력 구성모델 (An Effective Stress Based Constitutive Model on the Behavior under $K_0$ Condition)

  • 오세붕;김욱;박희범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.121-128
    • /
    • 2004
  • A constiutive model was proposed in order to model dilatancy under $K_0$ conditions. The model includes an anisotropic hardening rule with bounding surface and hypothetical peak stress ratio and dilatancy function which are dependent on a state parameter. The triaxial stress-strain relationship under $K_0$ conditions was calculated reasonably by the proposed model. In particular the model could consistently predict dilatancy in volume change, softening with peak strength and small strain behavior.

  • PDF

A comprehensive description for damage of concrete subjected to complex loading

  • Meyer, Christian;Peng, Xianghe
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.679-689
    • /
    • 1997
  • The damage of concrete subjected to multiaxial complex loading involves strong anisotropy due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks. A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic damage tenser. The evolution of damage is assumed to be related to the principal components of the current states of stress and damage. The unilateral effect of damage due to the closure and opening of microcracks is taken into account by introducing projection tensors that are also determined by the current state of stress. The proposed damage model considers the different kinds of damage mechanisms that result in different failure modes and different patterns of microdefects that cause different unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equation in which hardening and the triaxial compression caused shear-enhanced compaction can also be taken into account. The validity of the proposed model is verified by comparing theoretical and experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histories.

하이브리드 박막/굽힘 방법을 이용한 드로비드력의 예측 (Prediction of Drawbead Restraining Force by Hybrid Membrane/Bending Method)

  • 이명규;정관수;;금영탁
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.533-538
    • /
    • 2006
  • A simplified numerical procedure to predict drawbead restraining forces(DBRF) has been developed based on the hybrid membrane/bending method which superposes bending effects onto membrane solutions. As a semi-analytical method, the new approach is especially useful to analyze the effects of various constitutive parameters. The present model can accommodate general anisotropic yield functions along with non-linear isotropic-kinematic hardening under the plane strain condition. For the preliminary results, several sensitivity analyses for the process and material effects such as friction, drawbead depth, hardening behavior including the Bauschinger effect and yield surface shapes on the DBRF are carried out.

풍화토의 $K_0$ 조건하 거동에 대한 구성모델 (A Constitutive Model on the Behavior under $K_0$ Condition for Weathered Soils.)

  • 오세붕;김욱;정강복
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 2003
  • Undrained triaxial tests were performed under $K_{0}$ condition for a weathered soil, which includes local measurement using LVDT. An anisotropic hardening model based on effective stress concept could predict the stress-strain relationship under $K_{0}$ condition reasonably, which makes it possible to analyze geotechnical problems for the weathered soil.

  • PDF

사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법 (A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm)

  • 오세붕;박현일
    • 한국지반공학회논문집
    • /
    • 제20권5호
    • /
    • pp.37-48
    • /
    • 2004
  • 본 연구에서는 사질토의 취성적 응력-변형률 관계와 전단시 체적팽창을 고려할 수 있는 구성모델에 대한 연구를 수행하였다. 제안된 모델은 일반등방경화규칙에 의거한 비등방 경화규칙을 적용하였으며, 미소변형에서 대변형에 이르는 전체변형률 영역의 거동을 모델할 수 있도록 적합한 경화함수를 이용하였다. 항복면의 형태는 응력공간에서 원통형으로 나타나는 단순한 형태로 실용적으로 적용하기 편리하도록 하였다. 또한 유동규칙을 단순화하여 소성 체적 변형률을 팽창률을 이용하여 정의하였다. 이로 인하여 사질토에서 나타나는 전단시 팽창을 모델하는 것이 가능하였다. 또한 가상적인 첨두응력비를 정의하여 취성적 응력-변형률 관계를 모델하는 것이 가능하였다. 이 때 제안된 모델의 계수를 체계적으로 결정하기 위하여 실수형 유전자 알고리즘이 적용된 최적화 기법이 적용되었다. 이를 통하여 구성 모델에 필요한 계수를 결정할 수 있었다. 제안된 모델을 검증하기 위하여 풍화토시료에 대한 $K_0$ 압밀 삼축시험을 수행하였다. 이러한 시험결과를 제안된 모델과 비교한 결과 $K_0$ 압밀 시험에서 나타나는 취성적 응력-변형률 관계 및 체적의 팽창과 같은 실제 유효응력 거동을 합리적으로 모델하는 것이 가능하였다.

反復荷重을 받는 흙의 構成關係式 開發 (Development of Constitutive Equation for Soils Under Cyclic Loading Conditions)

  • 장병욱;송창섭
    • 한국농공학회지
    • /
    • 제34권1호
    • /
    • pp.41-48
    • /
    • 1992
  • Various soil behaviors usually occurring in the geotechnical problems, such as, cutting and embankments, stability of slope, seepage, consolidations, shearing failures and liquefaction, should be predicted and analyzed in any way. An approach of these predictions may be followed by the development of the constitutive equations as first and subsequently solved by numerical methods. The purpose of this paper is develop the constitutive equation of sands uder monotonic or cyclic loadings. The constitutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parameter by Sekiguchi et al and Pender's theory is derived. And the equation is included a new stress parameter, hardening function, Bauschinger's effects and Pender's theory. The model is later evaluated and confirmed the validity by the test data of Ottawa sand, Banwol sand Hongseong sand. The following conclustions may be drawn: 1. The consititutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parpameter by Sekiguchi et al and Pender's theory is derived. The equation in included a new stress parameter, hardening function, Bauschinger's effect and Pender's theory. 2. For Ottawa sand, the result of the constitutive equation shows a better agreement than that of Oka et al. The result of axial strain agrees well with the tested data. However, the result of horizontal strain is little bit off for the cyclic loadings or large stress. It is thought that the deviation may be improved by considering Poisson's ratio and precise measurement of shear modulus. 3. Banwol sand is used for the strain and stress tests with different relative densitites and confining pressures. The predeicted result shows a good agreement with the tested data because the required material parameters were directly measurd and determined form this laboratory. 4. For Hongseong sand, the tests under same amplitude of cyclic deviatoric stress shows a similar result with the tested data in absolute strain. It shows the acute shape of turning point because the sine wave of input is used in the test but the serrated wave in prediction.

  • PDF

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

등방단일경화구성모델에 의한 정규압밀점토의 거동 예측 (A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model)

  • 홍원표;남정만
    • 한국지반공학회지:지반
    • /
    • 제12권2호
    • /
    • pp.9-18
    • /
    • 1996
  • 실험실에서 재 성형한 정규압밀점토에 대하여 실시된 일련의 삼축압축시험 거동결과를 등방단일경화구성모델에 의한 예측치와 비교검토한다. 이 모델사용에 필요한 열한개의 계수는 등방압밀공시체에 대한 비배수삼축압축시험 결과로부터 간단히 결정된다. 이렇게 결정된 계수를 활용한 이 모델로 이방압밀공시체를 대상으로 한 비배수삼축압축시험시의 응력-변형률 및 간극 수압의 거동이 예측된다. 또한 등방압밀공시체 및 이방압밀공시체를 대상으로 실시한 배수삼축 압축시의 응력-변형률 및 체적변형률 거동예측에도 이 모델을 적용하였다. 예측치와 시험치의 비교결과 비배수삼축압축시험의 경우는 등방압밀공시체와 이방압밀공시체 모두에 좋은 일치를 보이고 있다. 그러나 배수삼축압축시험의 경우는 초기 체적변형률의 예측치가 시험치보다 약간 작게 나타나다가 파괴점에 근접함에 따라서는 예측치가 시험치보다 커지는 경향을 보이고 있다. 그러나 전반적인 응력 -변형률거동은 좋은 일치를 보이고 있음을 알 수 있다. 따라서, 본 연구결과 이 모델은 정규압밀점토의 거동예측에 적용성이 충분히 있다고 생각된다.

  • PDF

A similarity solution for undrained expansion of a cylindrical cavity in K0-consolidated anisotropic soils

  • Wang, You;Lin, Lin;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.303-315
    • /
    • 2021
  • A rigorous and generic similarity solution is developed for assessment of the undrained expansion responses of a cylindrical cavity expansion in K0-consolidated anisotropic soils. A K0-consolidated anisotropic modified Cam-clay (K0-AMCC) model that can represent the initial stress anisotropy and the effects of stress-induced anisotropy is used to model the soil behaviors during cavity expansion. All the seven basic unknowns, the three stress components, the pore water pressure, the particle velocity, the specific volume and the hardening parameter, are reduced to the functions of a dimensionless radial coordinate and are taken as coupled variables to formulate the problem. The governing equations are formulated by making use of the equilibrium equation, the constitutive equation, the consistency condition, the continuity condition and the undrained condition, which are then solved as an initial value problem. The proposed rigorous similarity solution is compared with some well-documented rigorous solutions to validate the solution and to highlight the special expansion responses in anisotropic soils. The results reveal that the present solution can yield more predictions for cavity expansion problems in soils with initial anisotropic stresses.

AZ31B 마그네슘 합금 판재의 구성식 개발 (Constitutive Modeling of AZ31B Magnesium Alloys)

  • 이명규;정관수;김헌영
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.