• Title/Summary/Keyword: Anisotropic growth

Search Result 98, Processing Time 0.026 seconds

An Analysis of Flat-Crack in Homogeneous Anisotropic Solids Considering Non-Singular Term (비특이항을 고려한 균질이방성체내 수평균열의 해석)

  • Im, Won-Gyun;Choe, Seung-Ryong;An, Hyeon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.69-78
    • /
    • 2000
  • The one-parameter singular expression for stresses and displacements near a crack tip has been widely thought to be sufficiently accurate over a reasonable re ion for any geometry and loading conditions. In many cases, however subsequent terms of the series expansion are quantitatively significant, and so we now consider the evaluation of such terms and their effect on the predicted crack growth direction. For this purpose the problem of a cracked orthotropic plate subjected to a biaxial load is analysed. It is assumed that the material is ideal homogeneous anisotropic. BY considering the effect of the load applied parallel to the plane of the crack, the distribution of stresses and displacements at the crack tip is reanalyzed. In order to determine values for the angle of initial crack extension we employ the normal stress ratio criterion.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Growth of Dendrites in the Unidirectionally Solidified Pivalic Acid-Ethanol System (일방향응고시킨 Pivalic Acid-Ethanol 계에서의 Dendrite의 성장)

  • Suk, Myung-Jin;Park, Young-Min
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2011
  • Transparent organic materials have been frequently used as an analog of the solidifying metallic materials, because their transparency permits an in-situ observation of the microstructural development during solidification through optical microscopy. Pivalic acid (PVA)-ethanol system showing an anisotropic property in solid-liquid interfacial energy and interface kinetics was adopted in the present experiment, and the detailed experiments performed are as follows: (1) variation of dendrite tip temperature with growth velocity, (2) correlation between primary dendrite arm spacing (${\lambda}_1$) and the growth orientation away from the heat flow direction (tilt angle: ${\theta}$), (3) variation of dendrite tip radius (R) with growth velocity (V), (4) dendrite tip stability parameter (${\sigma}^*$) and its dependence on the concentration. Concerning the correlation between the dendrite tip temperature and growth velocity the present result is well suited to Hunt-Lu equation. As the tilt angle increases, the average primary dendrite spacing tends to increase.

Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.58-62
    • /
    • 2004
  • The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.

Investigation of the Polarity in GaN Grown by HVPE (HVPE법으로 성장시킨 GaN의 극성 분석)

  • 정회구;정수진
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • The crystals of group-Ⅲ nitride semiconductors with wurtzite structure exhibit a strong polarity. Especially, GaN has characteristics of different growth rate, anisotropic electrical and optical properties due to the polarity. In this work, GaN epilayer was grown and the polarities of the crystals were observed by the chemical wet etching and SP-EFM. GaN thin films were deposited on c-plane A1₂O₃ substrate under the variations of growth conditions by HVPE such as the deposition temperature of the buffer layer, the deposition time, the ratio of Group-V and Ⅲ and the deposition temperature of the film. The adquate results were obtained under the conditions of 500℃, 90 seconds, 1333 and 1080℃, respectively. It is observed that the GaN layer grown without the buffer layer has N-polarity and the GaN layer grown on the buffer layer has Ga-polarity. Fine crystal single particles were grown on c-plane A1₂O₃ and SiO₂, layer. The external shape of the crystal shows {10-11}{10-10}(000-1) planes as expected in the PBC theory and anisotropic behavior along c-axis is obvious. As a result of etching on each plane, (000-1) and {10-11}planes were etched strongly due to the N-polarity and {10-10} plane was not affected due to the non-polarity. In the case of the crystal grown on c-plane A1₂O₃, two types of crystals were grown. They were hexagonal pyramidal-shape with {10-11}plane and hexagonal prism with basal plane. The latter might be grown by twin plane reentrant edge (TPRE) growth.

Charged Cluster Model as a New Paradigm of Crystal Growth

  • Nong-M. Hwang;In-D. Jeon;Kim, Doh-Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.87-125
    • /
    • 2000
  • A new paradigm of crystal growth was suggested in a charged cluster model, where charged clusters of nanometer size are suspended in the gas phase in most thin film processes and are a major flux for thin film growth. The existence of these hypothetical clusters was experimentally confirmed in the diamond and silicon CVD processes as well as in gold and tungsten evaporation. These results imply new insights as to the low pressure diamond synthesis without hydrogen, epitaxial growth, selective deposition and fabrication of quantum dots, nanometer-sized powders and nanowires or nanotubes. Based on this concept, we produced such quantum dot structures of carbon, silicon, gold and tungsten. Charged clusters land preferably on conducting substrates over on insulating substrates, resulting in selective deposition. if the behavior of selective deposition is properly controlled, charged clusters can make highly anisotropic growth, leading to nanowires or nanotubes.

  • PDF

Parallel Crack with Constant Velocity in Two Bonded Anisotropic Strip Under Anti-Plane Deformation (두 이방성 띠판에 내재된 면외변형하의 등속평행 균열)

  • Park, Jae-Wan;Kim, Nam-Hun;Choe, Seong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.496-505
    • /
    • 2000
  • A semi-infinite parallel crack propagated with constant velocity in two bonded anisotropic strip under anti-plane clamped displacement is analyzed. Using Fourier integral transform a Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are determined, where the results give the more general expression applicable to the extent of the anisotropic material having one plane of elastic symmetry for the parallel crack. The dynamic stress intensity factor and energy release rate are also obtained as a closed form, which are the results applicable to the problem both of dynamic and static crack under the same geometry as this study. The stress intensity factor approaches zero at the critical crack velocity which is less than the shear wave velocity, but in typical case of isotropic or orthotropic material agrees with the velocity of shear wave. Also a circular shear stress around crack tip is considered, from which the stress is shown to be approximately symmetric about the horizontal axis. Referring to the maximum stress criteria, it could be shown that a brenched crack is formed by crack growth as crack velocity increases.

Reliability Properties of Carbon Nanotube-filled Solderable Anisotropic Conductive Adhesives (탄소 나노튜브 함유 Solderable 이방성 도전성 접착제의 신뢰성 특성에 관한 연구)

  • Yim, Byung-Seung;Lee, Jeong Il;Kim, Jong-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In this paper, two types of assemblies using CNT-filled SACAs (with 0.03 wt% CNTs and without CNT) were prepared to investigate the influence of carbon nanotubes (CNTs) on the reliability properties of solderable anisotropic conductive adhesives (SACAs) with a low-melting-point alloy (LMPA). Two types of reliability test including thermal shock (TS: -55 to $125^{\circ}C$, 1000 cycles) and high-temperature and high-humidity (HTHH: $85^{\circ}C$, 85% RH, 1000 h) tests were conducted. The SACA assemblies with and without CNTs showed stable electrical reliability properties due to the formation of wide and stable metallurgical interconnection between corresponding metallizations by the molten LMPA fillers. Although the mechanical pull strength of CNT-filled SACA assemblies was decreased after thermal aging (because of the excessive layer growth and planarization of the IMCs), the CNT-filled SACA with 0.03wt% CNTs showed enhanced mechanical reliability properties compared with the SACA assemblies no CNTs. This enhancement in mechanical performance was due to the reinforcement effect of the CNTs. These results demonstrate that CNTs within the CNT-filled SACAs can improve the reliability properties of CNT-filled SACAs joints due to their superior physical properties.

Cosmological Tests using Redshift Space Clustering in BOSS DR11

  • Song, Yong-Seon;Sabiu, Cristiano G.;Okumura, Teppei;Oh, Minji;Linder, Eric V.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.43.3-44
    • /
    • 2015
  • We analyze the clustering of large scale structure in the Universe in a model independent method, accounting for anisotropic effects along and transverse to the line of sight. A large sample of 690,000 galaxies from The Baryon Oscillation Spectroscopy Survey Data Release 11 are used to determine the Hubble expansion H, angular distance D_A, and growth rate GT at an effective redshift of z=0.57. After careful bias and convergence studies of the effects from small scale clustering, we find that cutting transverse separations below 40 Mpc/h delivers robust results while smaller scale data leads to a bias due to unmodelled nonlinear and velocity effects. The converged results are in agreement with concordance LCDM cosmology, general relativity, and minimal neutrino mass, all within the $68{\backslash}%$ confidence level. We also present results separately for the northern and southern hemisphere sky, finding a slight tension in the growth rate -- potentially a signature of anisotropic stress, or just covariance with small scale velocities -- but within $68{\backslash}%$ CL.

  • PDF

Deformation of Ocean Object Using Anisotropic Metacube (비등방성 메타큐브를 이용한 해양 객체 변형 방법)

  • Youn Jae-Hong;Park Ju-Yeon;Kim Eun-Seok;Hur Gi-Taek
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.164-173
    • /
    • 2006
  • As the CG images in the films and the games are getting more realistic by the development of computer graphics, the requests of technique that can develop the various digital contents has also increased. However, the techniques developed for the studies and simulations of the ecological system and adaptation in the ocean, are insufficient compared with those on the ground. This paper propose a method of modeling to simulate the growth of ocean objects according to the variation of virtual ocean environment and the efficient metamorphosis based on the movement of the objects. By modeling the ocean objects with the anisotropic metacubes, it is possible to represent easily the growth and metamorphosis of fishes as the movement in the virtual environment of ocean.

  • PDF