• Title/Summary/Keyword: Anisotropic elliptic equations

Search Result 3, Processing Time 0.059 seconds

Existence Results for an Nonlinear Variable Exponents Anisotropic Elliptic Problems

  • Mokhtar Naceri
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.271-286
    • /
    • 2024
  • In this paper, we prove the existence of distributional solutions in the anisotropic Sobolev space $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ with variable exponents and zero boundary, for a class of variable exponents anisotropic nonlinear elliptic equations having a compound nonlinearity $G(x, u)=\sum_{i=1}^{N}(\left|f\right|+\left|u\right|)^{p_i(x)-1}$ on the right-hand side, such that f is in the variable exponents anisotropic Lebesgue space $L^{\vec{p}({\cdot})}(\Omega)$, where $\vec{p}({\cdot})=(p_1({\cdot}),{\ldots},p_N({\cdot})){\in}(C(\bar{\Omega},]1,+{\infty}[))^N$.

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function

  • Park, Noma;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1522-1539
    • /
    • 2002
  • In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.