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Abstract. In this paper, we prove the existence of distributional solutions in the
anisotropic Sobolev space W̊ 1,−→p (·)(Ω) with variable exponents and zero boundary, for
a class of variable exponents anisotropic nonlinear elliptic equations having a compound

nonlinearity G(x, u) =
N∑
i=1

(| f | + | u |)pi(x)−1 on the right-hand side, such that f is in the

variable exponents anisotropic Lebesgue space L
−→p (·)(Ω), where −→p (·) = (p1(·), . . . , pN (·)) ∈

(C(Ω, ]1,+∞[))N .

1. Introduction

In this work, we demonstrate the existence of distributional solutions for a specific class of
anisotropic nonlinear elliptic partial differential equations with variable exponents, of the
type :

(1.1)
−

N∑
i=1

∂i

(
| ∂iu |pi(x)−2 ∂iu

)
=

N∑
i=1

(| f | + | u |)pi(x)−1, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is an open bounded Lipschitz domain (having a Lipschitz bound-
ary ∂Ω), ∂iu = ∂u

∂xi
, i = 1, . . . , N , and the datum f belongs to the variable exponents

anisotropic Lebesgue space L
−→p (·)(Ω), which is defined as follows:

L
−→p (·)(Ω) =

N⋂
i=1

Lpi(·)(Ω).
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Here, problem (1.1) is −→p (x)-Laplacian operator equations, which involve the anisotropic
operator with variable exponents defined between the space W̊ 1,−→p (·)(Ω)(which will be
further discussed in Section 2) and its dual, as follows:

u 7→ −
N∑
i=1

∂i

(
| ∂iu |pi(x)−2 ∂iu

)
.

It is important to note that operators of this type have numerous applications in applied
sciences. For instance, they are commonly used in electro-rheological fluids and image
processing, as seen in references [6, 7, 2]. The noveltly of our work is that we take the

right-hand side as a compound nonlinearity G(x, u) =
N∑
i=1

(| f | + | u |)pi(x)−1 that links

the unknown u and the datum f ∈ L
−→p (·)(Ω). One cannot seperate these to reduce the

problem to the classical case where the right-hand side is in certain Sobolev spaces.
The proof is based on the usual method, which requires proving the existence of a

sequence of suitable approximate solutions (un) using the Leray-Schauder’s fixed point
Theorem. Prior estimates are then used to show the boundedness of the solutions un and
the almost everywhere convergence of their partial derivatives ∂iun, i = 1, . . . , N , which
can be converted into strong L1-convergence. With this convergence, we can pass to the
limit by L1−strongly sense in | ∂iun |pi(x)−2 ∂iun, and in (| fn | + | un |)pi(x)−1, and
finally we conclude the convergence of un to the solution of (1.1).

The paper is divided into several sections, with Section 2 covering mathematical pre-
liminaries. In this section, we discuss variable exponents anisotropic Lebesgue-Sobolev
spaces and their key characteristics, as well as mentioning some embedding theorems. The
main theorem and its proof can be found in Section 3.

2. Preliminaries

In this section, we will provide a brief reminder about variable exponent anisotropic
Lebesgue and Sobolev spaces. We will mention their most important properties and facts
that are relevant to this paper. For further information, please refer to sources [5, 1, 3]).

Let Ω ⊂ RN (N ≥ 2) be a bounded open subset, we define the set

C+(Ω) = {p(·) ∈ C
(
Ω,R

)
, 1 < p− ≤ p+ < ∞},

where, p+ = max
x∈Ω

p(x), and p− = min
x∈Ω

p(x).

Let p(·) ∈ C+(Ω). Then the following Young’s inequality holds true for all a, b ∈ R and all
ε > 0,

(2.1) |ab| ≤ ε|a|p(x) + c(ε)|b|p
′(x),

where, p′(·) denotes the Sobolev conjugate of p(·) (i.e. 1
p(·) +

1
p′(·) = 1 in Ω).

In addition, for any two real a, b ((a, b) ̸= (0, 0)) :

(2.2) (|a|p(x)−2a− |b|p(x)−2b)(a− b) ≥

{
22−p+ |a− b|p(x), if p(x) ≥ 2,

(p− − 1) |a−b|2

(|a|+|b|)2−p(x) , if 1 < p(x) < 2.
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Also, we will recall this elementary inequality:

(2.3) (a1 + . . .+ am)r ≤ max{1,mr−1}(ar
1 + . . .+ ar

m),

which is valid for ai ≥ 0, i = 1, . . . ,m and r ≥ 0.
The variable exponent Lebesgue space Lp(·)(Ω) defined by

Lp(·)(Ω) := {measurable functions u : Ω 7→ R; ρp(·)(u) < ∞},

where,

ρp(·)(u) :=

∫
Ω

|u(x)|p(x)dx, the convex modular of u.

It is a Banach space, and reflexive if p− > 1, under the norm

∥u∥p(·) := ∥u∥Lp(·)(Ω) = inf
{
γ > 0 | ρp(·)(u/γ) ≤ 1

}
.

The Hölder type inequality:

|
∫
Ω

uv dx |≤
(

1

p−
+

1

p′−

)
∥u∥p(·)∥v∥p′(·) ≤ 2∥u∥p(·)∥v∥p′(·),

holds true.
The variable exponents Sobolev space W 1,p(·)(Ω) defined as fellows

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : |Du| ∈ Lp(·)(Ω)

}
,

it becomes a Banach space when equipped with the norm

(2.4) u 7→ ∥u∥W1,p(·)(Ω) := ∥Du∥p(·).

We define also the Banach space W
1,p(·)
0 (Ω) by

W
1,p(·)
0 (Ω) := C∞

0 (Ω)
W 1,p(·)(Ω)

,

endowed with the norm (2.4). Moreover, is reflexive and separable if p(·) ∈ C+(Ω).
The following results came in [1, 3].
If (un), u ∈ Lp(·)(Ω), then we have

min
(
ρp(·)(u)

1

p+ , ρp(·)(u)
1

p−
)
≤ ∥u∥p(·) ≤ max

(
ρp(·)(u)

1

p+ , ρp(·)(u)
1

p−
)
,(2.5)

min
(
∥u∥p

−

p(·), ∥u∥
p+

p(·)

)
≤ ρp(·)(u) ≤ max

(
∥u∥p

−

p(·), ∥u∥
p+

p(·)

)
.(2.6)

Now, we will introduce the concept of anisotropic Sobolev spaces with variable
exponents W 1,−→p (·)(Ω), as we need them to solve our problem (1.1).
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Let pi(·) ∈ C
(
Ω, [1,+∞)

)
, i = 1, . . . , N , and we set for every x in Ω

−→p (x) = (p1(x), . . . , pN (x)), p+(x) = max
1≤i≤N

pi(x), p−(x) = min
1≤i≤N

pi(x),

p(x) =
N

N∑
i=1

1
pi(x)

, p+(x) = max
1≤i≤N

pi(x),

p++ = max
x∈Ω

p+(x), p−(x) = min
1≤i≤N

pi(x),

p−− = min
x∈Ω

p−(x), p⋆(x) =

{
Np(x)
N−p(x) , for p(x) < N,

+∞, for p(x) ≥ N.

The Banach space W 1,−→p (·)(Ω) is defined by

W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω), Diu ∈ Lpi(·)(Ω), i = 1, . . . , N

}
,

under the norm

∥u∥W 1,−→p (·)(Ω) = ∥u∥p+(·) +

N∑
i=1

∥Diu∥pi(·) .

The spaces W
1,−→p (·)
0 (Ω) and W̊ 1,−→p (·)(Ω) are defined as follow

W
1,−→p (·)
0 (Ω) = C∞

0 (Ω)
W 1,−→p (·)(Ω)

, W̊ 1,−→p (·)(Ω) = W 1,−→p (·)(Ω) ∩W 1,1
0 (Ω).

The following embedding results given in [4, 5].
Let Ω ⊂ RN be a bounded domain and −→p (·) ∈ (C+(Ω))

N .

Lemma 2.1. If r ∈ C+(Ω) and ∀x ∈ Ω, r(x) < max(p+(x), p⋆(x)). Then the
embedding

(2.7) W̊ 1,−→p (·)(Ω) ↪→ Lr(·)(Ω) is compact.

Lemma 2.2. If we have

(2.8) ∀x ∈ Ω, p+(x) < p⋆(x).

Then the following inequality holds

(2.9) ∥u∥
Lp+(·)(Ω)

≤ C

N∑
i=1

∥Diu∥Lpi(·)(Ω), ∀u ∈ W̊ 1,−→p (·)(Ω),

where C > 0 independent of u.Thus,

(2.10) u 7→
N∑
i=1

∥Diu∥Lpi(·)(Ω) is an equivalent norm on W̊ 1,−→p (·)(Ω).
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3. Statement of Results and Proof

Definition 3.1. The function u is a solution of the problem (1.1) in the sense of
distributions if and only if u ∈ W 1,1

0 (Ω), and for all φ ∈ C∞
c (Ω),

N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu∂iφdx =

N∑
i=1

∫
Ω

(| f | + | u |)pi(x)−1φdx.

Our main result is the following.

Theorem 3.1. Let −→p (·) ∈ (C+(Ω))
N such that p < N and (2.8) holds, and assume

that f ∈ L
−→p (·)(Ω). Then the problem (1.1) has at least one distributional solution

u ∈ W̊ 1,−→p (·)(Ω).

3.1. Existence of approximate solutions

Let (fn) be a sequence of bounded functions defined in Ω which converges to f in
L
−→p (·)(Ω). Since fn ∈ L

−→p (·)(Ω), from (2.5) we obtain

∥fn∥pi(·) ≤ 1 + ρ

1

p
−
i

(·)

pi(·) (fn) ≤ 2 + ρ

1

p
−
−

pi (fn) < ∞.

Through this, we conclude that

(3.1) fn is bounded in Lpi(·)(Ω), i = 1, . . . , N.

Lemma 3.1. Let −→p (·) ∈ (C+(Ω))
N such that p < N and (2.8) holds, and assume

that f ∈ L
−→p (·)(Ω). Then, there exists at least one weak solution un ∈ W̊ 1,−→p (·)(Ω)

to the approximated problems

(3.2)
−

N∑
i=1

∂i
(
| ∂iun |pi(x)−2 ∂iun

)
=

N∑
i=1

(| fn | + | un |)pi(x)−1, in Ω,

un = 0, on ∂Ω,

in the following sense

(3.3)

N∑
i=1

∫
Ω

| ∂iun |pi(x)−2 ∂iun∂iφdx =

N∑
i=1

∫
Ω

(| fn | + | un |)pi(x)−1φdx,

for every φ ∈ W̊ 1,−→p (·)(Ω) ∩ L∞(Ω).

Before proving Lemma 3.1 we must prove the following lemma:
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Lemma 3.2. Let n ∈ N∗ fixed, and for all (v, θ) ∈ X × [0, 1] where X = Lp+(·)(Ω)
we consider the problem

(3.4)

−
N∑
i=1

∂i
(
| ∂iu |pi(x)−2 ∂iu

)
= θ

N∑
i=1

(| fn | + | v |)pi(x)−1, in Ω,

u = 0 on ∂Ω.

For all (v, θ) ∈ X × [0, 1] the problem (3.4) has only the weak solution u satisfying
for all φ ∈ W̊ 1,−→p (·)(Ω), the weak formulation

(3.5)

N∑
i=1

∫
Ω

| ∂iu |pi(x)−2 ∂iu∂iφdx = θ

N∑
i=1

∫
Ω

(| fn | + | v |)pi(x)−1φdx.

Moreover, the operator Ψ : X × [0, 1] −→ X defined by :

Ψ(v, θ) = u ⇔ (u is the only weak solution of the problem (3.4)),

is continuous and compact.

Proof Using (2.3) and the fact that fn, v ∈ Lpi(·)(Ω) we get for all (v, θ) ∈
X × [0, 1] that

(3.6)

∫
Ω

(
(| fn | + | v |)pi(x)−1

)p′
i(x)

dx ≤ c

∫
Ω

(| fn |pi(x) + | v |pi(x)) dx ≤ C.

Therefore, from (3.6) we obtain for all i = 1, . . . , N ,

(| fn | + | v |)pi(x)−1 ∈ Lp′
i(·)(Ω),

and this implies that

θ

N∑
i=1

(| fn | + | v |)pi(x)−1 ∈ L
−→p ′(·)(Ω)

(
=

N⋂
i=1

Lp′
i(·)(Ω)

)
.

Here,
−→
p′ (·) = (p′1(·), . . . , p′N (·)) where p′i(·) denotes the Sobolev congugate of pi(·).

The existence of the weak solution u of the problem (3.4) in Lp+(·)(Ω) is directly
produced by the main Theorem on monotone operators, and the uniqueness of this
solution is a direct result of the homogeneous problem and this by assuming the
existence of two weak solutions.
Now we give an estimate of the solution u of the problem (3.4). Taking φ = u as
test function, and using (2.8), (2.3), (2.5), (2.6), the fact that pi(·) ≤ p∗(·) (from
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(2.8)), Lemma 2.1, boundedness of fn ∈ L
−→p (·)(Ω), and Hölder inequality, we have

N∑
i=1

∫
Ω

| ∂iu |pi(x) dx ≤
N∑
i=1

∫
Ω

(| fn | + | v |)pi(x)−1 | un | dx

≤ 2
∥∥ N∑

i=1

(| fn | + | v |)pi(x)−1
∥∥
p′
i(x)

∥u∥pi(·)

≤ c

(
N∑
i=1

∥ | f |pi(x)−1 ∥p′
i(x)

+

N∑
i=1

∥ | v |pi(x)−1 ∥p′
i(x)

)
∥u∥−→p (x)

≤ c

(
2N +

N∑
i=1

(∫
Ω

| fn |pi(x) dx

) 1

p
−
i +

N∑
i=1

(∫
Ω

| v |pi(x) dx

) 1

p
−
i

)
∥u∥−→p (x)

≤ c

c′ +

N∑
i=1

∥v∥
p
+
i

p
−
i

pi(·)

 ∥u∥−→p (x)

≤ C

1 + ∥v∥

p
+
+

p
−
−

p+(·)

 ∥u∥−→p (x),

(3.7)

where for the last equality we used that

c′ +

N∑
i=1

∥v∥
p
+
i

p
−
i

pi(·) ≤ c′′ +

N∑
i=1

∥v∥

p
+
+

p
−
−

pi(·) ≤ c′′ + c′′′∥v∥

p
+
+

p
−
−

p+(·)

for appropriate constants c′′ and c′′′.
On the other hand, by (2.6), we get

1 +

∫
Ω

| ∂iu |pi(x) dx ≥
∥∥∂iu∥∥p−

i

pi(·)
, i = 1, . . . , N,

and we have

1 +
∥∥∂iu∥∥p−

i

pi(·)
≥
∥∥∂iu∥∥p−

−
pi(·)

, i = 1, . . . , N.

Through this, we find that

2 +

∫
Ω

| ∂iu |pi(x) dx ≥
∥∥∂iu∥∥p−

−
pi(·)

, i = 1, . . . , N.

Then, we conclude

2N | Ω | +
N∑
i=1

∫
Ω

| ∂iu |pi(x) dx ≥
N∑
i=1

∥∥∂iu∥∥p−
−

pi(·)
.
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So, we get

(3.8)

N∑
i=1

∫
Ω

| ∂iu |pi(x) dx ≥

(
1

N

N∑
i=1

∥∥∂iu∥∥pi(·)

)p−
−

− 2N | Ω | .

By combining (3.7) and (3.8), we obtain

(3.9)
∥∥u∥∥p−

−
−→p (·) ≤ c

1 + ∥v∥

p
+
+

p
−
−

p+(·)

 ∥u∥−→p (·) + c′,

where, c > 0 and c′ > 0. Since
∥∥u∥∥−→p (·) > 1, from (3.9) we have

(3.10)
∥∥u∥∥−→p ≤

c

1 + ∥v∥

p
+
+

p
−
−

p+(·)

+ c′


1

p
−
−−1

.

Since
∥∥u∥∥−→p (·) ≤ 1, we find that (3.10) only holds in this case with under certain

conditions, such as c ≥ 1 or c′ ≥ 1. The goal is to combine the two cases
∥∥u∥∥−→p (·) > 1,

and
∥∥u∥∥−→p (·) ≤ 1 into same result (3.10).

We will now prove the continuity of Ψ. Let (vm, θm) be a sequence of Lp+(·)(Ω) ×
[0, 1] converging to (v, θ) in this space. Then,

vm −→ v, Strongly in Lp+(·)(Ω),(3.11)

θm −→ θ, in R.(3.12)

After considering the sequence (um) defined by um = Ψ(vm, θm), m ∈ N∗, we obtain
for n fixed in N∗ and all φ ∈ W̊ 1,−→p (·)(Ω)

(3.13)

N∑
i=1

∫
Ω

|∂ium|pi(x)−2∂ium∂iφdx = θm

N∑
i=1

∫
Ω

(| fn | +|vm|)pi(x)−1φdx.

For v, θ defined in (3.11), (3.12), we put u = Ψ(v, θ), then we have for n fixed in
N∗ and all φ ∈ W̊ 1,−→p (·)(Ω)

(3.14)

N∑
i=1

∫
Ω

| ∂iu |pi(x)−2 ∂iu∂iφdx = θ

N∑
i=1

∫
Ω

(| fn | + | v |)pi(x)−1φdx.

By(3.10) and the boundedness of (vm) in Lp+(·)(Ω) (from (3.11)):

(3.15)
∥∥um

∥∥−→p (·) =
∥∥Ψ(vm, θm)

∥∥−→p (·) ≤

c

1 + ∥vm∥

p
+
+

p
−
−

p+(·)

+ c′


1

p
−
−−1

≤ ϱ,
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with ϱ > 0 independent of m.
From (3.15) we conclude that the sequence (um) is bounded in W̊ 1,−→p (·)(Ω). So,
there exists a function w ∈ W̊ 1,−→p (·)(Ω) and a subsequence (still denoted by (um))
such that

(3.16) um ⇀ w weakly in W̊ 1,−→p (·)(Ω).

By (3.16), (2.8), and Lemma 2.1, we obtain that

(3.17) um −→ w Strongly in Lp+(·)(Ω).

Since the function s 7→ (| fn | +|s|)pi(x)−1 is continuous on Lp+(·)(Ω), we can pass
to the limit in (3.13) as m −→ +∞, then we get for all φ ∈ W̊ 1,−→p (·)(Ω),

(3.18)

N∑
i=1

∫
Ω

|∂iw|pi(x)−2∂iw∂iφdx = θ

N∑
i=1

∫
Ω

(| fn | + | v |)pi(x)−1φdx,

and this implies that w = Ψ(v, θ).
The uniqueness of the weak solution of problem (3.4) then shows that w = u =
Ψ(v, θ). So,

Ψ(vm, θm) = um −→ u = Ψ(v, θ) Strongly in Lp+(·)(Ω).

Which shows the continuity of Ψ.
We now move on to prove the compactness of Ψ. Let B̃ be a bounded of Lp+(·)(Ω)×
[0, 1]. Thus B̃ is contained in a product of the type B× [0, 1] with B a bounded set
of Lp+(·)(Ω), which can be assumed to be a ball of center O and of radius r > 0.
For u ∈ Ψ(B̃), thanks to (3.10), we get

∥∥u∥∥−→p (·) ≤

c

1 + r

p
+
+

p
−
−

+ c′


1

p
−
−−1

= ρ.

For u = Ψ(v, θ) with (v, θ) ∈ B× [0, 1] (
∥∥v∥∥

p+(·) ≤ r). This proves that Ψ applies B̃

in the closed ball in W̊ 1,−→p (·)(Ω) ⊂ Lp+(·)(Ω) of center O and radius ρ. Let un be a
sequence of elements of Ψ(B̃), therefore un = Ψ(vn, θn) with (vn, θn) ∈ B̃. Since un

remains in a bounded of W̊ 1,−→p (·)(Ω), it is possible to extract a subsequence which

converges strongly to an element u of Lp+(·)(Ω). This proves that Ψ(B̃)
Lp+(·)(Ω)

is
compact. So Ψ is compact.
Proof (of the Lemma 3.1):
It is clear that

(3.19) Ψ(v, 0) = 0, ∀v ∈ X,
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because u = 0 ∈ Lp+(·)(Ω) the only weak solution of the problem (3.4) in the case
θ = 0.
Now we show that there is an M > 0 such that

(3.20) ∀(v, θ) ∈ X × [0, 1] : v = Ψ(v, θ) ⇒
∥∥v∥∥

X
≤ M.

For that, we give the estimate for v ∈ Lp+(·)(Ω) such that v = Ψ(v, θ), then we have
for all φ ∈ W̊ 1,−→p (·)(Ω),

(3.21)

N∑
i=1

∫
Ω

|∂iv|pi(x)−2∂iv∂iφdx = θ

N∑
i=1

∫
Ω

(| fn | + | v |)pi(x)−1φdx.

After choosing φ = v in (3.21), and using (2.3), the fact that fn ∈ L
−→p (·)(Ω), v ∈

Lp+(·)(Ω), and Young’s inequality, we obtain

N∑
i=1

∫
Ω

| ∂iv |pi(x) dx ≤ c

N∑
i=1

∫
Ω

(| fn |pi(x)−1| v | + | v |pi(x)) dx

≤ c

N∑
i=1

∫
Ω

| v |pi(x) dx+ c

(
C(ε)

N∑
i=1

∫
Ω

| fn |pi(x) dx+ ε

N∑
i=1

∫
Ω

| v |pi(x) dx

)

= c(1 + ε)

N∑
i=1

∫
Ω

| v |pi(x) dx+ cC(ε)

N∑
i=1

∫
Ω

| fn |pi(x) dx

≤ c(1 + ε)

(
N | Ω | +

N∑
i=1

∫
Ω

| v |p+(x) dx

)
+ C ′(ε) ≤ C ′′(ε).

(3.22)

So, for any fixed choice of ε in (3.22), we obtain

(3.23)

N∑
i=1

∫
Ω

| ∂iv |pi(x) dx ≤ C.

Using similar arguments to those used for (3.8), we get

(3.24)

N∑
i=1

∫
Ω

| ∂iv |pi(x) dx ≥

(
1

N

N∑
i=1

∥∥∂iv∥∥pi(·)

)p−
−

− 2N | Ω | .

By combining (3.23) and (3.24) with using (2.8), we obtain that

(3.25)
C ′

Np−
−
∥v∥p

−
−

p+(·) ≤ C ′′.

From this, we conclude that, there exist c > 0, such that

(3.26)
∥∥v∥∥

p+(·) ≤ c.



Existence Results for an Nonlinear Variable Exponents Anisotropic Elliptic Problems 281

This implies (3.20). Through, (3.19), (3.20), and Lemma 3.2, we can apply the
Leray-Schauder Theorem. So, the operator Ψ1 : X −→ X defined by Ψ1(u) =
Ψ(u, 1) has a fixed point, which shows the existence of a solution of the approximated
problems (3.2) in the sense of (3.3).

3.1.1. A Priori Estimates

Lemma 3.3. Let f, a and pi, i = 1, . . . , N be restricted as in Theorem 3.1. Then
there exist C > 0 independent of n, such that

(3.27) ∥un∥−→p (·) ≤ C.

Proof After choosing φ = un in (3.3), and using (2.3), the fact that fn ∈
L
−→p (·)(Ω), un ∈ W̊ 1,−→p (·)(Ω), and Young’s inequality, we obtain

N∑
i=1

∫
Ω

| ∂iun |pi(x) dx ≤ c

N∑
i=1

∫
Ω

(| fn |pi(x)−1| un | + | un |pi(x)) dx

≤ c

N∑
i=1

∫
Ω

| un |pi(x) dx+ c

(
C(ε)

N∑
i=1

∫
Ω

| fn |pi(x) dx+ ε

N∑
i=1

∫
Ω

| un |pi(x) dx

)

= c(1 + ε)

N∑
i=1

∫
Ω

| un |pi(x) dx+ cC(ε)

N∑
i=1

∫
Ω

| fn |pi(x) dx

≤ c(1 + ε)

(
N | Ω | +

N∑
i=1

∫
Ω

| un |p+(x) dx

)
+ C ′(ε) ≤ C ′′(ε).

(3.28)

So, for any fixed choice of ε in (3.28), we obtain

(3.29)

N∑
i=1

∫
Ω

| ∂iun |pi(x) dx ≤ C.

By following the same arguments like in (3.8), we get

(3.30)

N∑
i=1

∫
Ω

| ∂iun |pi(x) dx ≥

(
1

N

N∑
i=1

∥∥∂iun

∥∥
pi(·)

)p−
−

− 2N | Ω | .

By combining (3.29) and (3.30) with using (2.8), we obtain that

(3.31)
C ′

Np−
−
∥un∥

p−
−

−→p (·) ≤ C ′′.

From this, we conclude that, there exist c > 0 independent of n, such that

(3.32)
∥∥un

∥∥−→p (·) ≤ c.

Therefore, (3.27) has been proven.
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Lemma 3.4. There exists a subsequence (still denoted (un)) such that, for all
i = 1, . . . , N

(3.33) ∂iun −→ ∂iu a.e. in Ω.

Proof From (3.27) the sequence (un) is bounded in W̊ 1,−→p (·)(Ω).
So, there exists a function u ∈ W̊ 1,−→p (·)(Ω) and a subsequence (still denoted by (un))
such that

(3.34) un ⇀ u weakly in W̊ 1,−→p (·)(Ω) and a.e in Ω.

We consider the function

Θn =

N∑
i=1

∫
Ω

(
| ∂iun |pi(x)−2 ∂iun− | ∂iu |pi(x)−2 ∂iu

)
(∂iun − ∂iu) dx,

and let’s prove that,

(3.35) lim
n→+∞

Θn = 0.

We can write Θn in the following form

Θn =

N∑
i=1

∫
Ω

| ∂iun |pi(x)−2 ∂iun(∂iun − ∂iu) dx

−
N∑
i=1

∫
Ω

| ∂iu |pi(x)−2 ∂iu(∂iun − ∂iu) dx = In − Jn,

where,

In =

N∑
i=1

∫
Ω

| ∂iun |pi(x)−2 ∂iun(∂iun − ∂iu) dx,

Jn =

N∑
i=1

∫
Ω

| ∂iu |pi(x)−2 ∂iu(∂iun − ∂iu) dx.

After choosing φ = un − u in (3.3), with the use of (3.34), and boundedness of
(| fn | + | un |)pi(x)−1 in Lp′

i(·) (( p′i(·) is the Sobolev conjugate of pi(·))), we can
obtain

(3.36) lim
n→+∞

In = 0.

Since (∂iun) is bounded in Lpi(·) (due (3.27)), then there exists a function w ∈ Lpi(·)

and a subsequence (still denoted by (∂iun)) such that

(3.37) ∂iun ⇀ w weakly in Lpi(x).
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Through (3.37) and the boundedness of | ∂iun |pi(x)−2 ∂iun in Lp′
i(x) we conclude

that

(3.38) lim
n→+∞

N∑
i=1

∫
Ω

| ∂iun |pi(x)−2 ∂iun(∂iun − w) dx = 0.

Combining (3.36) and (3.38), we get

(3.39) lim
n→+∞

N∑
i=1

∫
Ω

| ∂iun |pi(x)−2 ∂iun(∂iu− w) dx = 0.

Equation (3.39) implies that w = ∂iu, and so

(3.40) ∂iun ⇀ ∂iu weakly in Lpi(x).

From (3.40) and the boundedness of | ∂iu |pi(x)−2 ∂iu in Lp′
i(x) we conclude that

(3.41) lim
n→+∞

Jn = 0.

From (3.36) and (3.41) we get (3.35).
We put for all i = 1, . . . , N

λi,n(x) =
(
| ∂iun |pi(x)−2 ∂iun− | ∂iu |pi(x)−2 ∂iu

)
(∂iun − ∂iu).

Through (2.2) we conclude that, for all i = 1, . . . , N

(3.42) λi,n(x) > 0.

Then, (3.42) and (3.35) gives us, for all i = 1, . . . , N

(3.43) λi,n(x) −→ 0, strongly in L1(Ω).

Therefore, for a subsequence (still denoted by (un) ), we get for every i = 1, . . . , N

(3.44) λi,n(x) −→ 0 a.e. in Ω.

Then there exists a subset Ω0 ⊂ Ω, such that, | Ω0 |= 0 and for all x ∈ Ω\Ω0

| ∂iu(x) |< ∞, and λi,n(x) −→ 0.

From (3.44), we have for some functions k

λi,n(x) ≤ k(x).

Let us prove that, there exists a function g such that

(3.45) | ∂iun(x) |≤ g(x).
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From (2.2), we obtain

(3.46) k(x) ≥

c
(
(| ∂iun | − | ∂iu |)p

−
− − 1

)
, if pi(x) ≥ 2,

c′
(

|∂iun|−|∂iu|
1+|∂iun|+|∂iu|

)2
, if 1 < pi(x) < 2.

Through (3.46), we obtain (3.45). Now, we proceed by contradiction to prove that

(3.47) ∂iun(x) −→ ∂iu(x) in Ω\Ω0.

For this reason, we assume that there exists x0 ∈ Ω\Ω0 such that ∂iun(x0) does not
converge to ∂iu(x0). The Bolzano Weierstrass theorem implies that

∂iun(x0) −→ b ∈ R.

By the passage to the limit in λi,n(x0) when n −→ +∞, we obtain(
| b |pi(x0)−2 b− | ∂iu(x0) |pi(x0)−2 ∂iu(x0)

)
(b− ∂iu(x0)) = 0.

From (2.2), we get that b = ∂iu(x0). Therefore, we find that (3.33) has been proven.

3.2. Proof of the Theorem 3.1

From (3.33) and (3.27), Vitali’s theorem gives , for all i = 1, . . . , N

(3.48) ∂iun −→ ∂iu in L1(Ω) and a.e. in Ω.

So, we have

(3.49) | ∂iun |pi(x)−2 ∂iun −→| ∂iu |pi(x)−2 ∂iu a.e. in Ω.

By (3.27) we can get, for all i = 1, . . . , N
(3.50)∫

Ω

|| ∂iun |pi(x)−2 ∂iun |p
′
i(x) dx =

∫
Ω

| ∂iun |pi(x) dx ≤ c, p′i(·) =
pi(·)

pi(·)− 1
.

Equation (3.50) implies that for all i = 1, . . . , N

(3.51)
(
| ∂iun |pi(x)−2 ∂iun

)
uniformly bounded in Lp′

i(·)(Ω).

By Young’s inequality and since ∂iun ∈ Lpi(·)(Ω), we get for all ε > 0∫
Ω

|| ∂iun |pi(x)−2 ∂iun | dx =

∫
Ω

| ∂iun |pi(x)−1 dx

≤ C(ε) + ε

∫
Ω

| ∂iun |pi(x) dx

≤ C(ε) + εc = C ′(ε).(3.52)
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For any fixed choice for ε, we conclude that, for all i = 1, . . . , N(
| ∂iun |pi(x)−2 ∂iun

)
∈ L1(Ω).(3.53)

So by (3.53), (3.49), (3.51), and Vitali’s theorem, we derive, for all i = 1, . . . , N

(3.54) | ∂iun |pi(x)−2 ∂iun −→| ∂iu |pi(x)−2 ∂iu strongly in L1(Ω).

Now from (3.34) we conclude that

(3.55) (| fn | + | un |)pi(x)−1 −→ (| f | + | u |)pi(x)−1 a.e. in Ω.

On the other hand, by (2.3) and since fn, un ∈ Lpi(·)(Ω), we obtain for all i =
1, . . . , N∫

Ω

| (| fn | + | un |)pi(x)−1 |p
′
i(x) dx =

∫
Ω

(| fn | + | un |)pi(x) dx

≤c

∫
Ω

(
| fn |pi(x) + | un |pi(x)

)
dx ≤ C.(3.56)

Equation (3.56) implies that, for all i = 1, . . . , N

(3.57) (| fn | + | un |)pi(x)−1 uniformly bounded in Lp′
i(·)(Ω).

Like in the proof of (3.53), using the inequality (2.3) and that fn, un ∈ Lpi(·)(Ω),
we can obtain for all i = 1, . . . , N(

(| fn | + | un |)pi(x)−1
)
∈ L1(Ω).(3.58)

So by (3.58), (3.55), (3.57), and Vitali’s theorem, we derive, for all i = 1, . . . , N

(3.59) (| fn | + | un |)pi(x)−1 −→ (| f | + | u |)pi(x)−1 strongly in L1(Ω).

So we can pass to the limit in (3.3). Thus, we have proven the theorem 3.1.
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