• Title/Summary/Keyword: Anion-exchange

Search Result 685, Processing Time 0.032 seconds

Convenient Preparation of Ion-Exchange PVdF Membranes by a Radiation-Induced Graft Polymerization for a Battery Separator (배터리 분리막을 위한 이온교환형 PVdF 맴브레인의 방사선 그래프트법에 의한 간편한 제조법)

  • Kim, Sang-Kyum;Ryu, Jung-Ho;Kwen, Hai-Doo;Chang, Choo-Hwan;Cho, Seong-Ho
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.126-132
    • /
    • 2010
  • A cation-exchange nanofiber poly(vinylidene fluoride) (PVdF) membrane was prepared by a radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents in methanol solution. The used polymerizable access agents include styrene, acrylic acid, and vinyl pyrrolidone. The anion-exchange nanofiber PVdF membrane was also prepared by RIGP of glycidyl methacrylate (GMA) and its subsequent chemical modification. The successful preparations of cation- and anion-exchange PVdF membranes were confirmed via SEM, XPS and thermal analysis. The content of the grafting yield, ion-exchange group, and water uptake was in the range of 30.0~32.3%, 2.81~3.01 mmol/g and 66.6~147%, respectively. The proton conductivity at 20$^{\circ}C$ was in the range of 0.020~0.053 S/cm. From the result, the prepared ionexchange PVdF membrane can be used as a separator in battery cells.

Separation and Recovery of Rare Earths by Ion Exchange Chromatography (이온교환 크로마토그래피에 의한 희토류 원소의 분리와 회수)

  • Cha, Ki Won;Park, Kwang Won;Hong, Sung Wook
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.612-638
    • /
    • 1997
  • The methods of separation and recovery of rare earth elements in monazite sand have been studied by the ion exchange chromatography. Both of cation and anion exchange resin were used as ion exchange resins and the solutions of EDTA, DTPA, IMDA and Ln-EDTA were used as eluents. The H+, Zn2+, Fe3+, Al3+, Cu2+, and NH4+ forms of cation exchange resin were used as retaining ions. Ln-EDTA solution was loaded on the EDTA form of anion exchange resin and separated. The Ln-EDTA solution was also used as an eluent for a selective separation of one element from the rare earth mixture solution. The size effects of resin column, the elution mechanism for the various elution types and the separation of a large amount of rare earths were studied.

  • PDF

Synthesis, Characterization and Magnetic Properties of a Novel Disulfonate-pillared Copper Hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-Butanedisulfonate

  • Park, Seong-Hun;Lee, Cheol-Eui
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1587-1592
    • /
    • 2006
  • We report the preparation, structure and magnetic properties of a new pillared complex, copper(II) hydroxy-1,4-butanedisulfonate, $Cu_2(OH)_3(O_3SC_4H_8SO_3)_{1/2}$. The titled compound was obtained by anion exchange, using copper hydroxyl nitrate $(Cu_2(OH)_3NO_3)$ as the starting material. According to the XRD data, this compound exhibits a pillared layered structure with organic layers tilted between the copper hydroxide layers with a tilt angle of $21.8^{\circ}$. FTIR spectroscopy confirms total exchange of nitrate by the sulfonate and indicates that the sulfonate functions are linked to the copper(II) ions with each aliphatic chain bridging the adjacent hydroxide layers. According to the dc and ac magnetic measurements, the title compound is a metamagnet consisting of spin-canted antiferromagnetic layers, with a Neel temperature of 11.8 K.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Measurement of Carbon-14 Activity in Spent Ion-exchange Resin of Wolsong Nuclear Power Plant

  • Kim Kyoung-Doek;Choi Young-Ku;Kang Ki-Du;Yang Ho-Yeon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.165-175
    • /
    • 2005
  • Measurement of spent resin activity was initiated in 2004 in order to develop the C-14 removal technology for safe disposal. As part of this program, spent resins were sampled and measured in the in-station resin storage tank 2 at Wolsong Nuclear Power Plant Unit 1. At the time of sampling, the resins had been in storage tank from 3 to 23 years. Total 72 resin samples were sampled, which were collected from both man-hole (68 samples) and test-hole (4 samples) in the in-station resin storage tank 2. They were separated into liquid, activated carbon, zeolite, and spent resin. The spent resins were oxidized with sample oxidizer and analyzed for C-14. Ten of collected mixed resin samples were separated by density into cation and anion resins using a sugar solution. The C-14 concentration in anion exchange resin was approximately 2 times higher than in the mixed resin. The average concentration of C-14 in the cation/anion mixed exchange resin was $460\;GBq/m^3$ from test-hole and $53.1\;GBq/m^3$ from man-hole. We have found that concentration of C-14 in the spent resin is about from 0.4 to $1,321\;GBq/m^3$. So it could be a problem, when dispose of at a repository, since there is a disposal limit of $222\;GBq/m^3$. This means we should develop the C-14 removal technology.

  • PDF

Investigation of sequential separation method for $^{90}Sr,\;^{241}Am,\;^{239,240}Pu$ and $^{238}Pu$ isotopes ($^{90}Sr,\;^{241}Am,\;^{239,240}Pu$$^{238}Pu$ 동위원소들을 분리하기위한 축차분리법에 대한 고찰)

  • Lee Myung-Ho;Song Byoung-Chul;Park Young-Jai;Gee Kwang-Young;Kim Wein-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.248-254
    • /
    • 2005
  • This paper presents a quantitative method of sequential separation of $^{90}Sr,\;^{241}Am$ and Pu nuclides with an anion exchange resin and a Sr-Spec resin. The Pu isotopes were purified with an anion exchange resin. The americium and strontium fractions were separated from the matrix elements with an oxalate co-precipitation method. Americium fraction was separated from the strontium fraction with iron co-precipitation method and purified from lanthanides with anion exchange resin. Strontium-90 was purified from other hindrance elements with the Sr-Spec resin after oxalate co-precipitation. The measurement of Pu and Am isotopes was carried out by an ${\alpha}$-spectrometer. Strontium-90 was measured by a liquid scintillation counter. The radiochemical procedure of $^{90}Sr,\;^{241}Am$ and Pu nuclides investigated in this study has been validated by application to IAEA-Reference soils.

  • PDF

Separation and Purification for the Determination of Zirconium and Its Isotopes in PWR Spent Nuclear Fuels (PWR 사용후핵연료 중 Zr 및 Zr 동위원소 정량을 위한 분리 및 정제)

  • Kim, Jung Suk;Jeon, Young Shin;Park, Yong Joon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.421-428
    • /
    • 1998
  • A method has been studied to separate Zr from various fission products in PWR spent nuclear fuels. A solution containing metal ions in place of radioactive fission products was prepared. The Zr was separated with 5 M HCl followed by eluting metal ions such as Ce, Nd, Cs, Rb, Ba, Sr, Ru, Rh, Pd, Ag and Cd with 12 M HCl on Dowex $1{\times}8$, anion exchange resin. The recovery of Zr was more than 95%. The purification of Zr was carried out on anion exchange resin, Dowex $1{\times}8$, in 5 M HCl in order to remove Mo causing isobaric effect during mass spectrometry. The method was applied to separate Zr from a spent PWR fuel. From mass spectrometric measurement, the purified Zr portion was not showed the isobars from other elements such as Mo and Sr.

  • PDF

Preparation and Application of Anion-Exchange Membrane having Low Water-Splitting Capability (저 물분해 특성을 가진 음이온 교환막의 제조 및 응용)

  • Moon-Sung Kang;Yong-Jin Choi;Seung-Hyeon Moon
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.54-63
    • /
    • 2003
  • The Preparation and electrochemical characterization of anion-exchange membranes containing pyridinium groups were performed. As a result, the pyridinium membranes showed good electrochemical properties, comparable to those of the commercial membranes, with electrical resistance of less than $3.0 {\Xi}cm^2$ in a 0.5 mol $dm^{-3}$ NaCl and high ionic permselectivity (the transport number of $Cl^-$ ions being 0.97). Moreover, water splitting in the membranes containing pyridinium group was about two or three order of magnitude lower than those in the commercial membranes (e.g. AM-1, Tokuyama Crop., Japan) at the same current density because the resonance effedt in the quaternary aromatic pyridinium group contributed to their molecular stability. In addition, the electrodialytic properties of the pyridinium membranes were evaluated in a semi-pilot scale.