• Title/Summary/Keyword: Anion polymer

Search Result 139, Processing Time 0.025 seconds

Ionic Conductivity of Anion Receptor Grafted Siloxane Polymers for Solid Polymer Electrolytes

  • Lee, Won-Sil;Kim, Dong-Wook;Lee, Chang-In;Woo, Seong-Ihl;Kang, Yong-Ku
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • We have prepared siloxane polymers grafted with trifluoromethane-sulfonylamide and oligoether side chains for solid polymer electrolytes with enhanced ionic conductivity. The grafted trifluoromethane sulfonylamide groups seem to be effective as an anion recepting site to enhance the ionic conductivity of the solid polymer electrolyte. The anion receptor grafted siloxane polymers showed one order of magnitude higher ionic conductivity than the siloxane polymers without anion receptor grafts. The fitting parameter A of the VTF plot which was related to the carrier density of the electrolyte increased with increasing the number of grafted anion receptor. The results of experiment indicate that the anion-complexing site of the anion receptor grafted polymer host effectively traps the anions. The anion receptor grafted polymer was found to be a promising material for lithium polymer batteries.

Synthesis and Characteristics of Acrylol Borate as New Acrylic Gelator for Lithium Secondary Battery

  • Shin, Hyun-Min;Nguyen, Congtranh;Kim, Byeong-Yeol;Han, Myong-Hee;Kim, Ju-Sung;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.134-138
    • /
    • 2008
  • A novel acrylol borate was designed and synthesized by reacting acrylate monomer and boric acid. The obtained acrylol borate was used as both gelator and anion receptor for the liquid electrolyte in a lithium secondary battery. It was found that the ionic conductivity of the gel polymer electrolyte (GPE) was as high as that of the liquid electrolyte, and the thermal stability of GPE was increased when only 2 wt% acrylol borate was incorporated into the liquid electrolyte. These results suggest that acrylol borate can be used as an effective additive to enhance the thermal stability of the electrolyte without adversely affecting its conductivity. It is believed that the strong complex formation between boron in the gelator and the anion of the salt is responsible for the enhanced thermal stability of the electrolyte solution and the increased ionic conductivity.

A Review on Development of PPO-based Anion Exchange Membranes (PPO 기반 음이온 교환막 소재 개발 동향)

  • An, Seong Jin;Kim, Ki Jung;Yu, Somi;Ryu, Gun Young;Chi, Won Seok
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.

Enhanced Behaviors of Ionic-Polymer Metal Composite (IPMC) Actuator Coupled with Polymeric Anion-doped Polypyrrole Thin Film

  • Hong, Chan;Nam, Jae-Do;Tak, Yong-Sug
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.137-140
    • /
    • 2006
  • In order to overcome the weak actuation and relaxation problems during the deformation of IPMC actuator, polymeric anion (polystyrenesulfonate)-doped polypyrrole(Ppy(PSS)) was electrodeposited onto IPMC actuator. Electrochemical quartz crystal microbalance study showed that hydrated cations were instilled into Ppy(PSS) film and polymeric-anion dopants introduced during polymerization were not expelled. Ppy(PSS)-coated IPMC actuator formed two electrode/electrolyte interfaces, Pt/nafion and Ppy(PSS)/bulk solution, and additive volume expansion phenomena at interfaces induced the large deformation compensating the relaxation of actuation by back diffusion of water.

Design of Single Ion Conductive Solid Polymer Electrolytes Utilizing the Characteristics of the Boron Atom

  • Matsumi, Noriyoshi;Ohno, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.275-275
    • /
    • 2006
  • A series of organoboron polymer electrolytes were prepared and their ion conductive characteristics was investigated in detail. Alkylborane type polymer electrolytes prepared by hydroboration polymerization exhibited improve lithium transference number due to efficient anion trapping of alkylborane unit. A lithium borate type polymer/salt hybrid was also successfully prepared by dehydrocoupling polymerization of lithium mesitylhydrorate. Ionic conductivity of single ion conductive polymer/salt hybrid was further improved in the case of comb like polymer/boron stabilized imido anion hybrid prepared via polymer reaction of poly(organoboron halide) with hexylamine and PEO monomethylether and subsequent neutralization with lithium hydride.

  • PDF

Effect of Polymer Coating on the Initial Microorganism Attachment and the Biofilm Growth (고분자 물질 도포가 미생물 부착과 생물막 성장에 미치는 영향)

  • 박영식;송승구
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.104-109
    • /
    • 1998
  • The objective of this study was to examine the effect of polymer coating on the initial microorganism attachment and the biofilm growth. Such as nonion(polyacrylamine), anion(CMC-Na) and cation polymer coagulant(chitosan and PEI) were used for coating material of the support carrier(acryl plate). When polymer coagulant was coated with 5, 10, 20, 35, 50, 100 and 200 mg/l on the surface of acryl plate, initial microorganism attachment increased and optimum concentration for the attachment was 35 mg/l. Biofilm growth experiments were conducted with the substrate loading of 12.7gSCOD/$m^2\cdot$ day using RBC. The polymer coagulants such as CMC-Na, polyacrylamide, PEI and chitosan coating on the acryl plate facilitated the biofilm growth of microorganisms. Until the biofilm dry weight grows up to 0. 0038g/cm$^2$, biofilm growth on the plate coated with cation polymer like chitosan was better than that on the coated plate of nonion(polyacrylamine), anion(CMC-Na) polymer coagulant.

  • PDF

Performance of Anion Charged Copoly(1,2,4-benzenetricarboxylate/bis[4-(3-aminophenoxy)phenyl]sulfone/3,3',4,4'-benzophenone tetracar boxylate/1,2,3,4-butanetetracerboxylate) Ultrafiltration Membranes (음이온성 Copoly(1,2,4-benzenetricarboxylate/bis[4-(3-aminophenoxy)phenyl]sulfone/3,3',4,4'-benzophenonetetracarboxylate/1,2,3,4-butanetetracerboxylate) 한외여과막의 투과특성)

  • Jeon, Jong-young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.193-202
    • /
    • 2009
  • In the preparation of anion charged asymmetric ultrafiltration membranes by the conventional phase inversion method, several variables could be adjusted to control membrane permeations. The anion charged materials and its original polymer have good solubility in N-methyl-2-pyrrolidone. The membranes having a hydrophilic property were less fouled the membrane prepared from the original polymer. The preparation conditions, operation conditions, and hydrophilicity of polymer have played an important role in determining the permeation properties of membranes.

  • PDF

Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS) (폴리에테르설폰-폴리페닐렌설파이드설폰 블렌딩 고분자를 이용한 음이온교환막의 제조)

  • Lee, Kyung-Han;Han, Joo-Young;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.155-163
    • /
    • 2019
  • The anion exchange membrane using the blending polymer of poly(ether sulfone) and poly(phenylene sulfide sulfone) was prepared. It was confirmed by EDXS and FT-IR analysis that the prepared anion exchange membrane had the -N- as an anion exchange group. The ionic conductivity in 1 mol/L $H_2SO_4$ aqueous solution was measured. The ionic conductivity of the prepared anion exchange membrane was 0.015~0.083 S/cm, and had a high value compared with AFN and APS as a commercial anion exchange membrane. Permeabilities of the vanadium ions through the prepared anion exchange membrane were tested to evaluate the possibility as a separator in vanadium redox flow battery. Vanadium ion permeation rate in the prepared anion exchange membrane had a low value compared with Nafion 117 as a commercial cation exchange and AFN as a commercial anion exchange membrane.

Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances (고체 알칼리 연료전지용 음이온 교환 세공충진막의 제조 및 특성)

  • Choi, Young-Woo;Park, Gu-Gon;Yim, Sung-Dae;Lee, Mi-Soon;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.150-153
    • /
    • 2009
  • Anion exchange polymer electrolyte pore-filling membranes consisting of the whole hydrocarbon materials were prepared by photo polymerization with various quaternary ammonium cationic monomers and characterized on the properties for applying to solid alkali fuel cell (SAFC). Hydrocarbon porous substrates such as polyethylene were used for the preparation of the pore-filling membranes. The hydroxyl ion conductivity of the polymer electrolyte membranes prepared in this research was dependent on the composition ratio of an electrolyte monomer and crosslinking agents used for polymerization. Furthermore, these pore-filling membranes have commonly excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lower fuel crossover through the membranes, and easier preparation process than those of traditional cast membranes.

  • PDF

Adsorption Properties of Oxidized NO by Plasma Using Hybrid Anion-Exchange Fibers (복합음이온 교환섬유의 플라스마 산화 처리한 NO의 흡착특성)

  • Cho In-Hee;Kang Kyung-Seok;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • In this study, adsorption properties of oxidized NO by plasma using aminated polyolefin-g-GMA hybrid anion exchange fibers were investigated. The maximum conversion of $NO_2$ by plasma was 49% at the conditions of 200 ppm NO, 10% $O_2$ and 30 L/min of flow rate. The adsorption content for N02 of hybrid anion exchange fibers increased with increasing the swelling ratio and the highest value was 1.5 g $H_2O/g$ IEF. The adsorption of $NO_2$ by hybrid anion exchange fibers were very fast until 10 min and reached its maximum value of 80% at 120 min. Ion exchange capacity of hybrid anion exchange fibers increased with increasing the swelling ratio and it showed the highest 0.6 mmol/g IEF values at L/D=5. The adsorption isotherm model for hybrid anion exchange fibers were closer to Freundlich than Langmuir adsorption isotherm model. It was shown that adsorption of the multi-molecular layer was dominant.