• Title/Summary/Keyword: Animal model of depression

Search Result 54, Processing Time 0.027 seconds

Korean red ginseng water extract produces antidepressant-like effects through involving monoamines and brain-derived neurotrophic factor in rats

  • Tzu-wen Chou ;Huai-Syuan Huang;Suraphan Panyod ;Yun-Ju Huang ;Lee-Yan Sheen
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.552-560
    • /
    • 2023
  • Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.

Effects of tianeptine on symptoms of fibromyalgia via BDNF signaling in a fibromyalgia animal model

  • Lee, Hwayoung;Im, Jiyun;Won, Hansol;Nam, Wooyoung;Kim, Young Ock;Lee, Sang Won;Lee, Sanghyun;Cho, Ik-Hyun;Kim, Hyung-Ki;Kwon, Jun-Tack;Kim, Hak-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Previous reports have suggested that physical and psychological stresses may trigger fibromyalgia (FM). Stress is an important risk factor in the development of depression and memory impairments. Antidepressants have been used to prevent stress-induced abnormal pain sensation. Among various antidepressants, tianeptine has been reported to be able to prevent neurodegeneration due to chronic stress and reverse decreases in hippocampal volume. To assess the possible effect of tianeptine on FM symptoms, we constructed a FM animal model induced by restraint stress with intermittent cold stress. All mice underwent nociceptive assays using electronic von Frey anesthesiometer and Hargreaves equipment. To assess the relationship between tianeptine and expression levels of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and phosphorylated cAMP response element-binding protein (p-CREB), western blotting and immunohistochemistry analyses were performed. In behavioral analysis, nociception tests showed that pain threshold was significantly decreased in the FM group compared to that in the control group. Western blot and immunohistochemical analyses of medial prefrontal cortex (mPFC) and hippocampus showed downregulation of BDNF and p-CREB proteins in the FM group compared to the control group. However, tianeptine recovered these changes in behavioral tests and protein level. Therefore, this FM animal model might be useful for investigating mechanisms linking BDNF-CREB pathway and pain. Our results suggest that tianeptine might potentially have therapeutic efficacy for FM.

Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders (신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰)

  • Lee, Kyungmin
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas such as cerebral cortex, hippocampus and amygdala have abnormalities in neuroglial numbers and functions in subjects with mental illnesses including schizophrenia, dementia and mood disorders like major depression and bipolar disorder. These findings highlight the putative role and involvement of neuroglial cells in mental disorders. Herein I discuss the physiological roles of neuroglial cells such as astrocytes, oligodendrocytes, and microglia in maintaining normal brain functions and their abnormalities in relation to mental disorders. Finally, all these findings could serve as a useful starting point for potential therapeutic concept and drug development to cure unnatural behaviors and abnormal cognitive functions observed in mental disorders.

Experimental Study on the Antidepressant Effects of Magnolia Officinalis Extracts (후박의 항우울 효과에 대한 실험적 연구)

  • You, Ju-Yeon;Woo, Chan;Jeong, Hye-Ryon;Choi, Jung-Hoon;Lee, Un-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.256-266
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate the protective effects of Magnolia Officinalis extracts on the animal model of depression induced by immobilization stress. Methods : The subjects were divided into 4 groups : normal, saline solution-administered during immobilization stress, 200 mg/kg of magnolia extracts-administered (magnolia extract 200), and 400 mg/kg of magnolia extracts- administered (magnolia extract 400). During 2 days of immobilization stress treatment, they underwent forced swimming test (FST) and tail suspension test (TST). The number of serotonin (5-HT) immunostained nuclei in the dorsal raphe nucleus regions was measured by immunohistochemistry. Superoxide dismutase (SOD) and glutathione peroxidase (GPX) in blood were measured. Results : In FST, magnolia-administered groups showed significantly decreased immobilization. In TST, the magnolia extract 400 group showed decreased immobilization. The stress group showed significantly decreased number of 5-HT immunostained nuclei in the dorsal raphe nucleus regions, while magnolia extract 400 group showed increased number of 5-HT immunostained nuclei. Stress group showed decrease in serum level of SOD and GPX, while the magnolia extract 200 group showed increase in serum level of SOD and GPX. Conclusions : These results suggest potent effectiveness of magnolia extracts in the treatment of depression.

Impact of High Fat Diet-induced Obesity on the Plasma Levels of Monoamine Neurotransmitters in C57BL/6 Mice

  • Kim, Minjeong;Bae, SeungJin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.476-480
    • /
    • 2013
  • Obesity is one of the most serious health problems in developed countries. It negatively affects diverse aspects of human wellbeing. Of these, a relationship between obesity and depression is widely recognized but biomarkers for assessment of obesity-associated mood changes in animal obesity models are rarely known. Here we explored the link between obesity and the plasma levels of monoamine neurotransmitters involved in mood control using a sensitive UPLC/MSMS technique in high fat diet (HFD)-induced obesity model in male C57BL/6 mice to explore the potential utility of plasma tests for obesity-associated mood change. HFD (60% of total calories, 8 weeks) induced significantly higher weight gains in body (+37.8%) and fat tissue (+306%) in male C57BL/6 mice. Bioanalysis of serotonin, dopamine and norepinephrine in plasma at 8 weeks of HFD revealed that serotonin decreased significantly in the obese mice when compared to normal diet-fed mice ($2.7{\pm}0.6$ vs $4.3{\pm}2.0ng/ml$, N=8). Notably, a negative correlation was found between the levels of serotonin and body weight gains. Furthermore, principal component analysis (PCA) with the individual levels of neurotransmitters revealed that plasma levels of dopamine and serotonin could apparently differentiate the obese mice from lean ones. Our study demonstrated that blood plasma levels of neurotransmitters can be employed to evaluate the mood changes associated with obesity and more importantly, provided an important clue for understanding of the relationship between obesity and mood disorders.

Antidepressant effect of water extract of Taraxacum platycarpum through BDNF, ERK and CREB pathway (BDNF, ERK 및 CREB 경로를 통한 포공영 추출물의 항우울 효과)

  • Gu, Pil Sung;Lee, Jihye;Choi, Yun Hee;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • Objectives : Taraxacum platycarpum H. Dahlstedt has been reported to have several biological properties such as skin hydration and antiinflammation. The purpose of this study was to examine the antidepressive effects of water extract of T. platycarpum (WTP) on an animal model of depression. Methods : In the present study, normal ICR mice (4 weeks) were used, and orally administered with WTP (25, 50 and 100 mg/kg). Depression-like behavior was monitored the forced swimming test (FST) and tail suspension test (TST) in mice. The locomotor activity was evaluated to eliminate the false-positive activity in the open field test (OFT). Fluoxetine, the selective serotonin reuptake inhibitor, as a positive control was intraperitoneally administered at a dose of 15 mg/kg at 30 min before starting the behavioral test. Moreover, we evaluated the effects of WTP on the expression of brain-derived neurotrophic factor (BDNF) and the extracellular signal-regulated kinase (ERK)/ cyclic AMP response-element binding protein (CREB) signaling pathway in the hippocampus using Western blot. Results : The administration of WTP (50 and 100 mg/kg) significantly (P < 0.05, respectively) reduced the immobility time during FST and TST without accompanying changes in locomotor activity by OFT. Furthermore, WTP at dose of 100 mg/kg increased the BDNF expression and the phosphorylation of ERK and CREB in the hippocampus region. Conclusions : These results suggest that WTP has a useful anti-depressant effect through the regulation of BDNF/ERK/CREB signaling pathway.

Antidepressant-Like Effects of Lycii Radicis Cortex and Betaine in the Forced Swimming Test in Rats

  • Kim, Soo Jeong;Lee, Mi-Sook;Kim, Ji Hyun;Lee, Tae Hee;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • The purpose of the present study was to examine the effect of Lycii Radicis Cortex (LRC) and betaine (BT) on immobility and neurochemical change in the forced swimming test (FST) in the rat. LRC, BT or fluoxentine was administered intraperitoneally to Sprague-Dawley rats three times (1, 5 and 23.5 h) before the FST. To investigate antidepressant-like effect, serotonin (5-HT) and norepinephrine (NE) were examined in the hippocampus and hypothalamus of rats. LRC (100 mg/kg) and BT (30, 100 mg/kg) significantly decreased the immobility time in the FST. LRC (100 mg/kg) significantly increased both 5-HT and NE levels in the hypothalamus of rats exposed to FST. BT (100 mg/kg) significantly increased 5-HT levels in the hypothalamus and hippocampus of rats. Taken together, these results demonstrated that improvement in the behavioral changes after LRC and BT administration may be mediated by elevation of 5-HT level in the hypothalamus and hippocampus, indicating a possible antidepressant-like activity. The present results suggest that the efficacy of LRC and BT in an animal model of depression may provide anti-depressant effects in human, which remains to be determined.

Analysis of Contribution of Climate and Cultivation Management Variables Affecting Orchardgrass Production (오차드그라스의 생산량에 영향을 미치는 기후 및 재배관리의 기여도 분석)

  • Moonju Kim;Ji Yung Kim;Mu-Hwan Jo;Kyungil Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study aimed to confirm the importance ratio of climate and management variables on production of orchardgrass in Korea (1982-2014). For the climate, the mean temperature in January (MTJ, ℃), lowest temperature in January (LTJ, ℃), growing days 0 to 5 (GD 1, day), growing days 5 to 25 (GD 2, day), Summer depression days (SSD, day), rainfall days (RD, day), accumulated rainfall (AR, mm), and sunshine duration (SD, hr) were considered. For the management, the establishment period (EP, 0-6 years) and number of cutting (NC, 2nd-5th) were measured. The importance ratio on production of orchardgrass was estimated using the neural network model with the perceptron method. It was performed by SPSS 26.0 (IBM Corp., Chicago). As a result, EP was the most important variable (100%), followed by RD (82.0%), AR (79.1%), NC (69.2%), LTJ (66.2%), GD 2 (63.3%), GD 1 (61.6%), SD (58.1%), SSD (50.8%) and MTJ (41.8%). It implies that EP, RD, AR, and NC were more important than others. Since the annual rainfall in Korea is exceed the required amount for the growth and development of orchardgrass, the damage caused by heavy rainfall exceeding the appropriate level could be reduced through drainage management. It means that, when cultivating orchardgrass, factors that can be controlled were relatively important. Although it is difficult to interpret the specific effect of climates on production due to neural networking modeling, in the future, this study is expected to be useful in production prediction and damage estimation by climate change by selecting major factors.

Korean Red Ginseng reduces chronic social defeat stress-induced mood disorders via N-methyl-D-aspartate receptor modulation in mice

  • Lee, Bo-Ram;Lee, Ju-Hyun;Ko, Yong-Hyun;Seo, Jee-Yeon;Hur, Kwang-Hyun;Kim, Young-Jung;Kim, Seon-Kyung;Kim, Seong-Eon;Lee, Seok-Yong;Jang, Choon-Gon
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.254-263
    • /
    • 2021
  • Background: A chronic social defeat stress (CSDS) model has been proposed as relevant to stress-induced behavioral change in humans. In this study, we examined the effect of Korean Red Ginseng (KRG) on CSDS-induced mood disorders and protein expression in an animal model. Methods: To evaluate the effect of KRG on social defeat stress, test mice were exposed in the resident aggressor's home cage compartment for 14 days beginning 1 h after KRG treatment (10, 20, and 40 mg/kg, per oral (p.o.)). After the exposure, behavioral tests to measure anxiety, social interaction, and depression-like behavior were performed. To investigate the underlying mechanism, N-methyl-D-aspartate receptor expression levels in CSDS-induced mice were evaluated using Western blot analysis. Results: CSDS induced anxiety-like behaviors by decreasing central activity in the open-field test and open-arm approach in the elevated plus maze test and led to social avoidance behavior in the social interaction test. CSDS mice showed upregulated NR1, NR2A, and NR2B expression in the hippocampus. KRG 20 and 40 mg/kg ameliorated anxiety-like activities and KRG 20 mg/kg alleviated social avoidance by decreasing time in the corner zone. KRG treatment recovered CSDS-induced NR1, NR2A, and NR2B protein levels in the hippocampus. Conclusion: These results indicate that KRG has a therapeutic effect on CSDS-induced mood disorder by alleviating N-methyl-D-aspartate receptor overexpression in the hippocampus.

Hypericum Perforatum Decreased Hippocampus TNF-${\alpha}$ and Corticosterone Levels with No Effect on Kynurenine/Tryptophan Ratio in Bilateral Ovariectomized Rats

  • El-Bakly, Wesam M.;Hasanin, Amany H.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.233-239
    • /
    • 2014
  • The present study was designed to investigate the effect Hypericum Perforatum (HP), on behavioral changes, corticosterone, TNF-${\alpha}$ levels and tryptophan metabolism and disposition in bilateral ovariectomized rats compared to $17{\alpha}$-ethinylestradiol. Behavioral analysis by measuring immobility time in forced swimming test and open field test, serum and hippocampal corticosterone and TNF-${\alpha}$ along with hippocampal kynurenine/tryptophan ratio were determined in mature ovariectomized rats treated orally either by HP at three different doses 125, 250, and 500 mg/kg/day or by $17{\alpha}$-ethinylestradiol $30{\mu}g/kg/day$ for 30 days. Ovariectomized rats showed significant increase in immobility time in the forced swimming test. Along with elevation in serum and hippocampal TNF-${\alpha}$ and corticosterone levels associated with significant increase in hippocampal kynurenine/tryptophan ratio. Immobility time in the forced swimming test was decreased in rats treated by different doses of HP in a dose dependent manner and $17{\alpha}$-ethinylestradiol with no concomitant changes in the open field test. Only Rats treated with HP exhibited significant decrease in the elevated serum and hippocampal TNF-${\alpha}$ and corticosterone, which couldn't explain the associated insignificant effect on hippocampaus kynurenine/tryptophan ratio in comparison to ovariectomized untreated rats. It is concluded that increased tryptophan metabolism toward kynurenine secondary to elevated corticosterone and TNF-${\alpha}$ might be one of the pathohphysiological mechanisms that could explain depression like state observed in this rat model. Further, the observed attenuating effect of HP on TNF-${\alpha}$ and corticosterone could contribute in its antidepressant effect in this animal model by other ways than their effects on tryptophan-kynurenine metabolism pathway.