DOI QR코드

DOI QR Code

Antidepressant-Like Effects of Lycii Radicis Cortex and Betaine in the Forced Swimming Test in Rats

  • Kim, Soo Jeong (Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University) ;
  • Lee, Mi-Sook (Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University) ;
  • Kim, Ji Hyun (Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University) ;
  • Lee, Tae Hee (Department of Formulae Pharmacology, College of Oriental Medicine, Gachon University) ;
  • Shim, Insop (Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University)
  • Received : 2012.09.17
  • Accepted : 2013.01.10
  • Published : 2013.01.31

Abstract

The purpose of the present study was to examine the effect of Lycii Radicis Cortex (LRC) and betaine (BT) on immobility and neurochemical change in the forced swimming test (FST) in the rat. LRC, BT or fluoxentine was administered intraperitoneally to Sprague-Dawley rats three times (1, 5 and 23.5 h) before the FST. To investigate antidepressant-like effect, serotonin (5-HT) and norepinephrine (NE) were examined in the hippocampus and hypothalamus of rats. LRC (100 mg/kg) and BT (30, 100 mg/kg) significantly decreased the immobility time in the FST. LRC (100 mg/kg) significantly increased both 5-HT and NE levels in the hypothalamus of rats exposed to FST. BT (100 mg/kg) significantly increased 5-HT levels in the hypothalamus and hippocampus of rats. Taken together, these results demonstrated that improvement in the behavioral changes after LRC and BT administration may be mediated by elevation of 5-HT level in the hypothalamus and hippocampus, indicating a possible antidepressant-like activity. The present results suggest that the efficacy of LRC and BT in an animal model of depression may provide anti-depressant effects in human, which remains to be determined.

Keywords

References

  1. Barak, A. J., Beckenhauer, H. C. and Tuma, D. J. (1996) Betaine, ethanol, and the liver: a review. Alcohol 13, 395-398. https://doi.org/10.1016/0741-8329(96)00030-4
  2. Bland, R. C. (1997) Epidemiology of affective disorders: a review. Can. J. Psychiatry 42, 367-377. https://doi.org/10.1177/070674379704200403
  3. Blier, P. and Abbott, F. V. (2001) Putative mechanisms of action of antidepressant drugs in affective and anxiety disorders and pain. J. Psychiatry Neurosci. 26, 37-43.
  4. Blier, P. and de Montigny, C. (1994) Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 15, 220-226. https://doi.org/10.1016/0165-6147(94)90315-8
  5. Cryan, J. F., Valentino, R. J. and Lucki, I. (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci. Biobehav. Rev. 29, 547-569. https://doi.org/10.1016/j.neubiorev.2005.03.008
  6. Deltheil, T., Guiard, B. P., Cerdan, J., David, D. J., Tanaka, K. F., Reperant, C., Guilloux, J. P., Coudore, F., Hen, R. and Gardier, A. M. (2008) Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Neuropharmacology 55, 1006-1014. https://doi.org/10.1016/j.neuropharm.2008.08.001
  7. Detke, M. J., Rickels, M. and Lucki, I. (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121, 66-72. https://doi.org/10.1007/BF02245592
  8. Eikelboom, J. W., Lonn, E., Genest, J. Jr., Hankey, G. and Yusuf, S. (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann. Intern. Med. 131, 363-375. https://doi.org/10.7326/0003-4819-131-5-199909070-00008
  9. Han, S. H., Lee, H. H., Lee, I. S., Moon, Y. H. and Woo, E. R. (2002) A new phenolic amide from Lycium chinense Miller. Arch. Pharm. Res. 25, 433-437. https://doi.org/10.1007/BF02976596
  10. Harkin, A., Shanahan, E., Kelly, J. P. and Connor, T. J. (2003) Methylenendioxyamphetamine produces serotonin nerve terminal loss and diminished behavioural and neurochemical responses to the antidepressant fluoxetine. Eur. J. Neurosci. 18, 1021-1027. https://doi.org/10.1046/j.1460-9568.2003.02802.x
  11. Hollister, L. E. (1990) Problems in the search for cognition enhancers. Pharmacopsychiatry 23 Suppl 2, 33-36.
  12. Hwang, B. H., Kunkler, P. E., Tarricone, B. J., Hingtgen, J. N. and Nurnberger, J. I. Jr. (1999) Stress-induced changes of norepinephrine uptake sites in the locus coeruleus of C57BL/6J and DBA/2J mice: a quantitative autoradiographic study using [3H]-tomoxetine. Neurosci. Lett. 265, 151-154. https://doi.org/10.1016/S0304-3940(99)00241-4
  13. Johnson, J., Weissman, M. M. and Klerman, G. L. (1992) Service utilization and social morbidity associated with depressive symptoms in the community. JAMA 267, 1478-1483. https://doi.org/10.1001/jama.1992.03480110054033
  14. Kim, S. Y., Choi, Y. H., Huh, H., Kim, J., Kim, Y. C. and Lee, H. S. (1997) New antihepatotoxic cerebroside from Lycium chinense fruits. J. Nat. Prod. 60, 274-276. https://doi.org/10.1021/np960670b
  15. Kosel, M. and Schlaepfer, T. E. (2002) Mechanisms and state of the art of vagus nerve stimulation. J. ECT. 18, 189-192. https://doi.org/10.1097/00124509-200212000-00004
  16. Liotti, M. and Mayberg, H. S. (2001) The role of functional neuroimaging in the neuropsychology of depression. J. Clin. Exp. Neuropsychol. 23, 121-136. https://doi.org/10.1076/jcen.23.1.121.1223
  17. Mancinelli, A., D'Aranno, V., Borsini, F. and Meli, A. (1987) Lack of relationship between effect of desipramine on forced swimming test and brain levels of desipramine or its demethylated metabolite in rats. Psychopharmacology (Berl) 92, 441-443.
  18. Miura, H., Naoi, M., Nakahara, D., Ohta, T. and Nagatsu, T. (1993) Changes in monoamine levels in mouse brain elicited by forced-swimming stress, and the protective effect of a new monoamine oxidase inhibitor, RS-8359. J. Neural. Transm. Gen. Sect. 94, 175-187. https://doi.org/10.1007/BF01277023
  19. Moller, H. J. and Volz, H. P. (1996) Drug treatment of depression in the 1990s. An overview of achievements and future possibilities. Drugs 52, 625-638. https://doi.org/10.2165/00003495-199652050-00001
  20. Nishiyama, R. (1963) Betaine of Lycium chinense. Nippon Shokuhin Kogyo Gakkaishi 10, 517-519. https://doi.org/10.3136/nskkk1962.10.12_517
  21. Page, M. E., Detke, M. J., Dalvi, A., Kirby, L. G. and Lucki, I. (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl) 147, 162-167. https://doi.org/10.1007/s002130051156
  22. Ponasik, J. A., Strickland, C., Faerman, C., Savvides, S., Karplus, P. A. and Ganem, B. (1995) Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Biochem. J. 311, 371-375. https://doi.org/10.1042/bj3110371
  23. Porsolt, R. D., Le Pichon, M. and Jalfre, M. (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730-732. https://doi.org/10.1038/266730a0
  24. Schwab, U., Torronen, A., Meririnne, E., Saarinen, M., Alfthan, G., Aro, A. and Uusitupa, M. (2006) Orally administered betaine has an acute and dose-dependent effect on serum betaine and plasma homocysteine concentrations in healthy humans. J. Nutr. 136, 34-38. https://doi.org/10.1093/jn/136.1.34
  25. Schwab, U., Torronen, A., Toppinen, L., Alfthan, G., Saarinen, M., Aro, A. and Uusitupa, M. (2002) Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am. J. Clin. Nutr. 76, 961-967. https://doi.org/10.1093/ajcn/76.5.961
  26. Sheline, Y. I., Sanghavi, M., Mintun, M. A. and Gado, M. H. (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci. 19, 5034-5043.
  27. Sprince, H., Parker, C. M. and Josephs, J. A. Jr. (1969) Homocysteine-induced convulsions in the rat: protection by homoserine, serine, betaine, glycine and glucose. Agents Actions 1, 9-13. https://doi.org/10.1007/BF01990014
  28. Takahashi, T. (2011) Neuroeconomics of suicide. Neuro. Endocrinol. Lett. 32, 400-404.
  29. Tang, W. and Eisenbrand, G. (1992) Chinese drugs of plant origin: Chemistry, Pharmacology, and Use in Traditional and Modern Medicine. Springer, New York.
  30. Taylor, D., Meader, N., Bird, V., Pilling, S., Creed, F. and Goldberg, D. (2011) Pharmacological interventions for people with depression and chronic physical health problems: systematic review and meta-analyses of safety and efficacy. Br. J. Psychiatry 198, 179-188. https://doi.org/10.1192/bjp.bp.110.077610
  31. Watanabe, H., Kobayashi, T., Tomii, M., Sekiguchi, Y., Uchida, K., Aoki, T. and Cyong, J. C. (2002) Effects of Kampo herbal medicine on plasma melatonin concentration in patients. Am. J. Chin. Med. 30, 65-71. https://doi.org/10.1142/S0192415X02000077
  32. Wong, A. H. and Liu, F. (2012) Uncoupling the dopamine D1-D2 receptor complex: a novel target for antidepressant treatment. Clin. Pharmacol. Ther. 91, 298-302. https://doi.org/10.1038/clpt.2011.311

Cited by

  1. Plant-derived natural medicines for the management of depression: an overview of mechanisms of action vol.26, pp.3, 2015, https://doi.org/10.1515/revneuro-2014-0058
  2. Electroacupuncture regulate hypothalamic–pituitary–adrenal axis and enhance hippocampal serotonin system in a rat model of depression vol.615, 2016, https://doi.org/10.1016/j.neulet.2016.01.004
  3. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells vol.37, pp.3, 2016, https://doi.org/10.3892/ijmm.2016.2477
  4. Phytochemical constituents as future antidepressants: a comprehensive review vol.26, pp.6, 2015, https://doi.org/10.1515/revneuro-2015-0009
  5. Protective Effect of Lycii Radicis Cortex against 6-Hydroxydopamine-Induced Dopaminergic Neuronal Cell Death vol.39, pp.3, 2015, https://doi.org/10.1111/jfbc.12127
  6. Luteolin mediates the antidepressant-like effects of Cirsium japonicum in mice, possibly through modulation of the GABAA receptor vol.37, pp.2, 2014, https://doi.org/10.1007/s12272-013-0229-9
  7. Strain Differences in the Chronic Mild Stress Animal Model of Depression and Anxiety in Mice vol.22, pp.5, 2014, https://doi.org/10.4062/biomolther.2014.058
  8. The comparisons of Lycii Radicis Cortex and Corni Fructus water extract effects on streptozotocin-induced diabetes in rats vol.28, pp.6, 2013, https://doi.org/10.6116/kjh.2013.28.6.71
  9. Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice vol.233, pp.17, 2016, https://doi.org/10.1007/s00213-016-4359-x
  10. Therapeutic effect of acupuncture combined with antidepressants on changes in the HAMD-17 score in major depressive disorder vol.1073, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1073/6/062037
  11. Effect of Sphaerococcus Coronopifolius Stackhouse 1797 on Anxiety-like Behavior induced by Sciatic Nerve Ligation in Female Wistar Rats vol.9, pp.1, 2013, https://doi.org/10.22376/ijpbs.2018.9.1.b214-222
  12. 자궁내막증 수술 후 GnRH-agonist 투여 중인 환자의 저에스트로겐 부작용에 대한 복합 한의 치료: 증례보고 vol.31, pp.4, 2013, https://doi.org/10.15204/jkobgy.2018.31.4.188
  13. Role of Autophagy in Parkinson’s Disease vol.26, pp.20, 2013, https://doi.org/10.2174/0929867325666180226094351
  14. Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine vol.30, pp.4, 2013, https://doi.org/10.5607/en21011
  15. Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice vol.144, pp.None, 2021, https://doi.org/10.1016/j.biopha.2021.112369
  16. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use vol.285, pp.None, 2022, https://doi.org/10.1016/j.jep.2021.114692