• Title/Summary/Keyword: Angular speed

Search Result 458, Processing Time 0.022 seconds

Comparison on the Kinematic Variables of Racket Movement According to Velocity in Tennis Serve (테니스 서브 속도에 따른 라켓 움직임의 운동학적 변인 비교)

  • Lee, Dong-Jin;Oh, Cheong-Hwan;Jeong, Ik-Su;Park, Chan-Ho;Lee, Gun-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study were to find out the differences in kinematic variables of racket movement by performing the tennis serve. Three top male tennis players participated in this study. Three synchronized high-speed cameras were used to record the service action of top players for Three dimensional video analysis. The results of this study showed that (1) the velocity of the tennis racket at impact is important to the generation of racket velocity to Y-axis. This result indicates that forward motion and upward movement of the racket; (2) with respect to racket angular velocity at impact, the fast angular momentum of X-axis is important to generate the velocity of the tennis ball. This result indicate upward movement of the racket with a strong flexor of wrist joint; (3) the velocity of the tennis ball was influenced by the change of angular linking the Z-axis to -X-axis. This result indicates that the high velocity of the tennis ball is obtained from having the racket unitedly moving to the direction of the bill's flight at the acceleration interval and acquiring the distance of acceleration with the racket head vertically to the ground at the back scratching.

The Kinematic Analysis of Handspring Salto Forward Piked (핸드스프링 몸접어 앞공중돌기동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.145-153
    • /
    • 2007
  • The purpose of this study is to compare and analyze the phase-by-phase elapsed time, the COG, the body joint angle changes and the angular velocities of each phase of Handspring Salto Forward Piked performed by 4 college gymnasts through 3D movement analysis program. 1. The average elapsed time for each phase was .13sec for Phase 1, .18sec for Phase 2, .4sec for Phase 3, and .3sec for Phase 5. The elapsed time for Phase 1 to Phase 3 handspring was .35sec on average and the elapsed time for Phase 4 to Phase 5 handspring salto forward piked was .7sec on average. And so it showed that the whole elapsed time was 1.44sec. 2. The average horizontal changes of COG were 93.2 cm at E1, 138. 5 cm at E2, 215.7 cm at E3, 369.2 cm at E4, 450.7 cm at E5, and 553.1 cm at E6. The average vertical changes of COG were 83.1 cm at E1, 71.3 cm at E2, 78.9 cm at E3, 93.7 cm at E4, 150.8 cm at E5, and 97.2 cm at E6. 3. The average shoulder joint angles at each phase were 131.6 deg at E1, 153.5 deg at E2, 135.4 deg at E3, 113.4 deg at E4, 39.6 deg at E5, and 67.5 deg at E6. And the average hip joint angles at each phase were 82.2 deg at E1, 60 deg at E2, 101.9 deg at E3, 161.2 deg at E4, 97.7 deg at E5, and 167 deg at E6. 4. The average shoulder joint angular velocities at each phase were 130.9deg/s E1, 73.1 deg/s at E2, -133.9 deg/s at E3, -194.4 deg/s at E4, 29.4 deg/s at E5, and -50.1 deg/s at E6. And the average hip joint angular velocities at each phase were -154.7 deg/s E1, -96.5 deg/s at E2, 495.9 deg/s at E3, 281.5 deg/s at E4, 90.3 deg/s at E5, and 181.7 deg/s at E6. The results shows that, as for the performance of handspring salto forward piked, it is important to move in short time and horizontally from the hop step to the point to place the hands on the floor and jump, and to stretch the hip joints as much as possible after the displacement of the hands and to keep the hip joints stretched and high in the vertical position at the takeoff. And it is also important to bend the shoulder joints and the hip joints fast and spin as much as possible after the takeoff, and to decrease the speed of spinning by bending he shoulder joints and the hip joints quickly after the highest point of COG and make a stable landing.

Kinematic Characteristics Based on Proficiency In Geoduepyeopchagi in Taekwondo Poomsae Koryo

  • So, Jae Moo;Kang, Sung-Sun;Hong, AhReum;Jung, Jong Min;Kim, Jai Jeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.343-351
    • /
    • 2016
  • Objective: The purpose of this study was to help improve game performance and provide preliminary data to enhance the efficiency of the kick and stability of the support foot by comparing the kinematic characteristics of the repeated side kick (geodeupyeopchagi) in poomsaeKoryo between expert and non-expert groups. Method: The subjects were divided into 2 groups according to proficiency in Taekwondo, an expert group and a non-expert group (n = 7 in each group), to observe the repeated side-kick technique. Four video cameras were set at a speed of 60 frames/sec and exposure time of 1/500 sec to measure the kinematic factors of the 2 groups. The Kwon3D XPprogramas used to collect and analyze three-dimensional spatial coordinates. Ground reaction force data were obtained through a force plate with a 1.200-Hz frequency. An independent samplesttest was performed, and statistical significance was defined as .05. The SPSS 18.0 software was used to calculate the mean and standard deviation of the kinematic factors and to identify the difference between the experts and non-experts. Results: The angular displacement of the hip joint in both the expert and non-expert groups showed statistical significance on E1 and E4 of the left support foot and E5 of the right foot (p<.05). The angle displacement of the knee joint in both groups showed statistical significance on E4 of the left support foot, and E1 and E2 of the right foot (p<.05). The angular velocity of the lower leg in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 and E6 of the right foot (p<.05). The angular velocity of the foot in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 of the right foot (p<.05). The vertical ground reaction force in both groups showed statistical significance on E2 (p<.05). The center of pressure in all directions in both groups showed statistical significance (p<.5). Conclusion: While performing the repeated side kick (geodeupyeopchagi), the experts maintainedconsistency and stability of the angle of the support leg while the kick foot moved high and fast. On the other hand, the angle of the support foot of non-experts appeared inconsistent, and the kick foot was raised, relying on the support leg, resulting in unstable and inaccurate movement.

The Kinematic Analysis of the Tennis Flat Serve Motion (테니스 플랫 서브 동작의 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Su-Nam;Nam, Taek-Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.97-108
    • /
    • 2006
  • C. H. OH, S. N. CHOI, T. G. NAM, The Kinematic Analysis of the Tennis Flat Serve Motion, Korean Jiurnal of Sports Biomechanics, Vol. 16, No. 2, pp. 97-108, 2006. By the comparison and the analysis of the different factors during the tennis flat serve motion such as the required time per section, the movement displacement of the racket, the velocity of the upper limbs joints, the physical center of gravity, and the angle and the angular velocity of the upper limbs joints between an ace player and a mediocre player, these following results were drawn. First, the experiment result of the total time required per section in a tennis flat serve motion showed that an ace player was faster than a mediocre player by 0.4 seconds. This result suggested that it was required to increase the speed of the racket head by a swift swing to perform an effective flat serve motion. Second, the experiment result of the movement displacement of the racket in the tennis flat serve motion showed that an ace player greatly moved toward the left side on an x-axis. But both an ace and a mediocre player were shown to be at the similar points on a y-axis at the moment of the impact of the racket. An ace player was also shown to be located at a higher position on a z-axis by 0.23m. Third, the velocity of the center of gravity of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fourth, the velocity of the upper limb joints of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fifth, the experiment result of the speed of the racket head in tennis flat serve motion showed that a mediocre player was faster than an ace player in the first phase, but the latter was faster than the former in the second, third, and the fourth phases. Sixth, at the moment of impact of a tennis flat serve, an ace player had greater flexion of the angle of the wrist joints by an 11.8 degree than a mediocre player. An ace player also had greater extension of the angle of the elbow joint and the shoulder joint respectively by a 5.2 degree and a 1.4 degree with a mediocre player. Seventh, an ace player had greater angular velocity of the upper limb joints and the hip joints than a mediocre player at the moment of the impact of tennis flat serve. Eighth, an ace player was shown to have a greater change of the forward and the backward inclination (or the anterior and posterior inclination) of the upper body

The Kinematic Analysis of the Upper Extremity during Backhand Stroke in Squash (스쿼시 백핸드 드라이브 동작시 상지 분절의 운동학적 변인 분석)

  • An, Yong-Hwan;Ryu, Ji-Seon;Ryu, Ho-Young;Soo, Jae-Moo;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2007
  • The purposes of this study were to investigate kinematic parameters of racket head and upper extremities during squash back hand stroke and to provide quantitative data to the players. Five Korean elite male players were used as subjects in this study. To find out the swing motion of the players, the land-markers were attached to the segments of upper limb and 3-D motion analysis was performed. Orientation angles were also computed for angular movement of each segment. The results were as follows. 1) the average time of the back hand swing (downswing + follow-through) was 0.39s (0.24 s + 0.15 s). 2) for each event, the average racket velocity at impact was 11.17m/s and the velocity at the end of swing was 8.03m/s, which was the fastest swing speed after impact. Also, for each phase, 5.10m/s was found in down swing but 7.68m/s was found in follow-through. Racket swing speed was fastest after the impact but the swing speed was reduced in the follow-through phase. 3) in records of average of joints angle, shoulder angle was defined as the relative angle to the body. 1.04rad was found at end of back swing, 1.75rad at impact and it changes to 2.35 rad at the end of swing. Elbow angle was defined as the relative angle of forearm to upper arm. 1.73rad was found at top of backswing, 2.79rad at impact, and the angle was changed to 2.55rad at end of swing. Wrist angle was defined as the relative angle of hand to forearm. 2.48rad was found at top of backswing, 2.86rad at impact, and the angle changes to 1.96rad at end of swing. As a result, if the ball is to fly in the fastest speed, the body has to move in the order of trunk, shoulder, elbow and wrist (from proximal segment to distal segment). Thus, the flexibility of the wrist can be very important factor to increase ball speed as the last action of strong impact. In conclusion, the movement in order of the shoulder, elbow and the wrist decided the racket head speed and the standard deviations were increased as the motion was transferred from proximal to the distal segment due to the personal difference of swing arc. In particular, the use of wrist (snap) may change the output dramatically. Therefore, it was concluded that the flexible wrist movement in squash was very important factor to determine the direction and spin of the ball.

The Kinematic Analysis of Back-Kick Motion in Taekwondo (태권도 숙련자와 미숙련자의 공격뒤차기 동작에 대한 운동학적 분석)

  • Lee, Dong-Jin;Park, Chan-Ho;Kim, Hun-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.43-51
    • /
    • 2006
  • The purpose of this study was to analyze kinematic variables during turing back kick motion of Taekwondo. The subjects of this study were the 4 skilled and 4 unskilled of male university player in respectively. The experiment of this study was used two 16mm high speed cameras and its speed 125 frames/s. Analysis of this data was three dimensional cinematography using KWON3D program package. The results were as following; 1. In the elapsed time, there was no significance difference statically between a skilled and unskilled group. But skilled group was more fast during the motion of I phase. And unskilled group was more fast during the motion of II phase so called force production section, which had an influence on Diechagi's velocity. 2. In the center of gravity of human body, the changing of it was $1.10{\pm}0.04m$, $1.12{\pm}0.03m$ of LFM(left foot movement) and $1.36{\pm}0.08m$, $1.39{\pm}0.09m$ of RKF(right knee flection), and $1.44{\pm}0.08m$, $1.42{\pm}0.09m$ of RFI(right foot impact). There was no significance difference statically between the two groups. 3. The velocity of heel on impact was 1.13m/s in the skilled group and 1.23m/s in the unskilled group, when each angle of knee was $110.4{\pm}10.9deg/s$, $114.8{\pm}28.4deg/s$. The maximum velocity of each performance was reached before the RKF, and the velocity and angle at impact along by two groups did not show any significant difference statically. 4. In the angular velocity of just RKF of lower leg, there was significance difference statically between the two groups(p<.05).

3-Dimensional Analysis of the Running Motion in the Max-Velocity Phase and the Fatigue Phase During 400m Sprint by Performed Elementary School Athletes (달리기시 최고 속도 및 피로 구간의 3차원 동작 분석)

  • Bae, Sung-Jee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2006
  • This study was conducted to investigate the running motion in the max-velocity phase(150-160m) and the fatigue phase(350-360m) during 400m sprint by performed elementary school athletes. Eighteen elementary school male athletes who achieved at least the 3rd place in the sprint at the Korea Gangwon-Do elementary school track and field meetings during 2004 and 2005 were selected as subjects. The running motions performed by the subjects were recorded using two 8mm high speed cameras at the nominal speed of 100 frames per second. The Direct Linear Transformation technique was adopted from the beginning of filming to the final stage of data extraction. KWON 3D motion analysis package program was used to compute the 3 Dimensional coordinates, smoothing factor in which lowpass filtering method was used and cutoff frequency was 6.0 Hz. The movement patterns during foot touchdown and takeoff for the running stride were related with the biomechanical consideration. Within the limitations of this study it is concluded: In order to increase running velocity, several conditions must be fullfilled at the instant of leg touchdown and takeoff during the fatigue phase(350-360m). First, the body C.O.G(Center of Gravity) height should be raised at the instant of leg touchdown and takeoff during the fatigue phase. Second, the foot contact time should be shortened and the takeoff distance should be increased at the foot takeoff during the fatigue phase. Third, the shank angular velocity with respect to a transverse axis through the center of gravity should be increased during the leg touchdown and takeoff in the fatigue phase. Forth, the active landing style described as clawing the ground with the sole of the foot should be performed during the leg touchdown and takeoff in the fatigue phase) phase. Fifth, In order to increase running velocity in the fatigue phase while taking a slightly greater leg knee angle and body lean angle within the range of the subject's running motion during the fatigue phase would result in greater flight distance.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

APPLICATION OF SUPPORT VECTOR MACHINE TO THE PREDICTION OF GEO-EFFECTIVE HALO CMES

  • Choi, Seong-Hwan;Moon, Yong-Jae;Vien, Ngo Anh;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2012
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

Empirical Forecast of Solar Proton Events based on Flare and CME Parameters

  • Park, Jin-Hye;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.97.1-97.1
    • /
    • 2011
  • In this study we have examined the probability of solar proton events (SPEs) and their peak fluxes depending on flare (flux, longitude and impulsive time) and CME parameters (linear speed, longitude, and angular width). For this we used the NOAA SPE list and their associated flare data from 1976 to 2006 and CME data from 1997 to 2006. We find that about 3.5% (1.9% for M-class and 21.3% for X-class) of the flares are associated with SPEs. It is also found that this fraction strongly depends on longitude; for example, the fraction for $30W^{\circ}$ < L < $90W^{\circ}$ is about three times larger than that for $30^{\circ}E$ < L < $90^{\circ}E$. The SPE probability with long duration (${\geq}$ 0.3 hours) is about 2 (X-class flare) to 7 (M-class flare) times larger than that for flares with short duration (< 0.3 hours). In case of halo CMEs with V ${\geq}$ 1500km/s, 36.1% are associated with SPEs but in case of partial halo CME ($120^{\circ}$ ${\leq}$ AW < $360^{\circ}$) with 400 km/s ${\leq}$ V < 1000 km/s, only 0.9% are associated with SPEs. The relationships between X-ray flare peak flux and SPE peak flux are strongly dependent on longitude and impulsive time. The relationships between CME speed and SPE peak flux depend on longitude as well as direction parameter. From this study, we suggest a new SPE forecast method with three-steps: (1) SPE occurrence probability prediction according to the probability tables depending on flare and CME parameters, (2) SPE flux prediction from the relationship between SPE flux and flare (or CME) parameters, and (3) SPE peak time.

  • PDF