• Title/Summary/Keyword: Angular momentum

Search Result 235, Processing Time 0.024 seconds

Temperature effect on spherical Couette flow of Oldroyd-B fluid

  • Hassan, A. Abu-El;Zidan, M.;Moussa, M.M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annular region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gradient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected. An approximate analytical solution of the energy and momentum equations is obtained through the expansion of the dynamical fields in power series of Nahme number. The analysis show that, the temperature variation due to the external source appears in the zero order solution and its effect extends to the fluid velocity distribution up to present second order. Viscous heating contributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and a second order stream function fields has been appeared. Moreover, at higher orders the temperature distribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of positive and negative values depend on their positions in the domain region between the two spheres.

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

Performance and Internal Flow Analysis on the 80kW-Class Cross-Flow Hydro Turbine with the Variation of Effective Head (유효낙차에 따른 80kW급 횡류수차의 성능 및 내부유동 해석)

  • Choi, Young-Do;Lim, Jae-Ik;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.703-710
    • /
    • 2010
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not determined yet in the range of small hydropower and it is necessary to study for the effective turbine type. Therefore, a 80kW-Class cross-flow turbine is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that as effective head increases, tangential and radial flow velocities increase and thus, the increased tangential velocity contributes to the increase of angular momentum and output torque.

Design Criteria and Cluster Configuration Improvement of Single Gimbal Control Moment Gyros for Satellite (인공위성을 위한 제어모멘트자이로의 설계시 고려요소 및 배치형상 개선방안)

  • Seo, Hyun-Ho;Rhee, Seung-Wu;Lee, Seon-Ho;Oh, Shi-Hwan;Yim, Jo-Ryeong;Yong, Ki-Lyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.48-56
    • /
    • 2008
  • Nowadays, CMG(Control Moment Gyros) becomes one of the essential actuators for satellite attitude control. The method to define the key requirements of CMG is suggested to avoid CMG's singularity problem for the limited envelope of angular momentum of 2H. Furthermore, the analysis and simulation are carried out to provide a necessary guideline when three CMGs are used for spacecraft control purpose. An improved configuration of redundant four CMG cluster, slightly different from the conventional configuration, is proposed not only to avoid the CMG singularity problem, but to improve agility about roll or pitch-axis.

A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner (다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) -)

  • Shin, Myung-Chul;Ahn, Je-Hyun;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

Fault Tolerant Attitude Control of a Spacecraft Using Two Wheels (두 개의 휠을 이용한 인공위성의 내고장 자세제어)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • This paper considers a fault tolerant control problem for a spacecraft using wheels which are momentum exchanging devices. The control of a satellite with only two healthy wheels has been studied and its result has been presented. Two different configurations have been considered. When the yaw rate cannot be controlled directly by any control input, the desired yaw rate can be obtained by using the roll rate as a pseudo control. As a result, all three angular speeds have been stabilized, and two attitude angles including pitch and yaw have been controlled to converge to the desired values.

Internal Flow Characteristics for Tangential Entry Conditions in a Swirl Injector (스월 인젝터에서 접선방향 유입구 조건에 따른 내부유동의 특성 연구)

  • Kim, Sung-Hyuk;Khil, Tae-Ock;Cho, Seong-Ho;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.115-118
    • /
    • 2008
  • Many theoretical and experimental studies have been conducted to investigate elements of the hydrodynamic process, such as variations in liquid film thickness or air core diameter. From these studies, some theoretical relationships have been established through an approximated analytical solution of flow hydrodynamics in a swirl nozzle. However, experimental studies on elements such as internal flow have not produced conclusive results. In this study, the variations and stability of the internal flow were examined by visualizing the air core and measuring the liquid film thickness.

  • PDF

Study for the Increase of Micro Regenerative Pump Head

  • Horiguchi, Hironori;Wakiya, Keisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.189-196
    • /
    • 2009
  • The effect of inlet and outlet blade angles on a micro regenerative pump head was examined in experiments. The pump head was little increased by changing the blade angles compared with the original pump with the inlet and outlet blade angles of 0 degree. The effect of the axial clearance between the impeller and the casing on the pump head was also examined. The head was increased largely by decreasing the axial clearance. The computation of the internal flow was performed to clarify the cause of the increase of the pump head due to the decrease of the clearance. The local flow rate in the casing decreased as the leakage flow rate through the axial clearance decreased due to the decrease of the clearance. It was found that the larger head in the smaller clearance was just caused by the smaller local flow rate in the casing. In the case of the smaller clearance, the smaller local flow rate caused the smaller circumferential velocity near the front and rear sides of the impeller. This caused the increase of the angular momentum in the casing and the head.

Magnetohydrodynamic Simulations of Barred Galaxies

  • Kim, Woong-Tae;Stone, James M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2012
  • We use two-dimensional high-resolution MHD simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks and leads to a smaller and more centrally distributed ring, resulting in the mass inflow rates larger, by more than two orders of magnitude, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms have a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.

  • PDF

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.