• 제목/요약/키워드: Angular momentum

검색결과 235건 처리시간 0.022초

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.35.2-35.2
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Statistical Analysis of Interacting Dark Matter Halos: On two physically distinct interaction types

  • An, Sung-Ho;Kim, Juhan;Moon, Jun-Sung;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.28.1-28.1
    • /
    • 2021
  • We present a statistical analysis of dark matter halos with interacting neighbors using a set of cosmological simulations. We classify the neighbors into two groups based on the total energy (E12) of the target-neighbor system; flybying neighbors (E12 ≥ 0) and merging ones (E12 < 0). First, we find a different trend between the flyby and merger fractions in terms of the halo mass and large-scale density. The flyby fraction highly depends on the halo mass and environment, while the merger fraction show little dependence. Second, we measure the spin-orbit alignment, which is the angular alignment between the spin of a target halo (${\vec{S}}$ ) and the orbital angular momentum of its neighbor (${\vec{L}}$). In the spin-orbit angle distribution, the flybying neighbors show a weaker prograde alignment with their target halos than the merging neighbors do. With respect to the nearest filament, the flybying neighbor has a behavior different from that of the merging neighbor. Finally, we discuss the physical origin of two interaction types.

  • PDF

Kinematical Analysis of Somersault with Twist in Men's Vault: Focusing on the Lou Yun and Akopian Motions

  • Lim, Kyu-Chan;Park, Hyung Suh
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.243-248
    • /
    • 2016
  • Objective: The aim of this study was to determine the kinematical characteristics of somersault with twist in the Lou Yun and Akopian motions and to provide useful information to gymnastic athletes in men's vault. Method: The study subjects were 12 male adult top athletes. After 12 trials (7 Lou Yun and 5 Akopian trials) filmed by using two digital high-speed camcorders set at 90 frames/sec, kinematical data were collected through the direct linear transformation (DLT) method. The mean differences in biomechanical variables were compared during the second flight upward phase. The kinematic characteristics of somersault with twist in the Lou Yun and Akopian motions were identified. Results: In Lou Yun motion, the vertical release velocity through horse breaking was not difficult to obtain, so the athletes had enough time to prepare for the twist. Therefore, the Lou Yun motion has an advantage to make a cat twist in the pike posture. In the Akopian motion, obtaining the horizontal velocity through horse pushing was so easy that the Akopian athletes attained a large angular impulse and angular momentum. Therefore, the Akopian motion has an advantage to making a tilt twist in the body tilting posture. Conclusion: This study suggests that gymnastic athletes should control their body segment movements in order to increase the twisting angular velocity of the whole body, which requires regulation of the longitudinal moment of inertia of the body. Moreover, athletes should prepare for the shoulder and hip twists early in order to make the landing position in advance.

횡류수차의 유효낙차 변화에 따른 성능 및 내부유동 (Performance and Internal Flow of Cross-Flow Hydro Turbine by Effective Head)

  • 김두환;최영도;임재익;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.191.1-191.1
    • /
    • 2010
  • Global concerns about environmental issues such as a greenhouse effect are increasing gradually. Quantity of emission of carbon dioxide by Hydro-Power Plants is smaller than those by power plants of other renewable energy sources. Manufacturing costs of hydro turbine is relatively very expensive because the structure of hydro turbine is very complex. Therefore, cross-flow turbine is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that as effective head increases, tangential and radial flow velocities increase and thus, the increased tangential velocity contributes to the increase of angular momentum and output torque.

  • PDF

Calculation of Potential Energy Curves of Excited States of Molecular Hydrogen by Multi-Reference Configuration-interaction Method

  • Lee, Chun-Woo;Gim, Yeongrok;Choi, Tae Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1771-1778
    • /
    • 2013
  • For the excited states of a hydrogen molecule up to n = 3 active spaces, potential energy curves (PECs) are obtained for values of the internuclear distance R in the interval [0.5, 10] a.u. within an accuracy of $1{\times}10^{-4}$ a.u. (Hartree) compared to the accurate PECs of Kolos, Wolniewicz, and their collaborators by using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. It is found that the accuracy of the PECs can be further improved beyond $1{\times}10^{-4}$ a.u. for that R interval by including the Rydberg basis functions with angular momentum quantum numbers higher than l = 4.

Magnetoconductance of a Hybrid Quantum Ring: Effects of Antidot Potentials

  • Kim, Nammee;Park, Dae-Han;Kim, Heesang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.335.1-335.1
    • /
    • 2016
  • The electronic structures of a hybrid magnetic-electric quantum ring and two terminal conductance taking into account the resonant backscattering via both magnetic and electric edge channels are studied. The hybrid magnetic-electric quantum ring is formed by a magnetic quantum dot combined with an additional antidot electrostatic potential at the center of the dot. Electrons are both magnetically and electrically confined to the plane. The antidot potential repelling electrons from the center of the dot plays an important role in the energy spectra and magnetoconductance. The angular momentum transition in the ground state and the behavior of magnetoconductance due to a change of the antidot potential are shown in comparison with the conventional magnetic quantum dot.

  • PDF

Ocean tide-induced secular variation in the Earth-Moon dynamics

  • Uchida, Natsuki;Shima, Hiroyuki
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.611-626
    • /
    • 2018
  • We theoretically consider a possible influence of periodic oceanic tides on non-periodic changes in the dynamics of the Earth and Moon over a long time scale. A particular emphasis will be placed on the contribution from rotating tidal waves, which rotate along the inner edge of an oceanic basin surrounded by topographic boundary. We formulate the angular momentum and the mechanical energy of the rotating tidal wave in terms of celestial parameters with regard to the Earth and Moon. The obtained formula are used to discuss how the energy dissipation in the rotating tidal wave should be relevant to the secular variation in the Earth's spin rotation and the Earth-Moon distance. We also discuss the applicability of the formula to general oceanic binary planets subject to tidal coupling.

재생펌프의 유동해석 및 누설유동에 관한 연구 (Through Flow Analysis and Leakage Flow of a Regenerative Pump)

  • 심창열;강신형
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1015-1022
    • /
    • 2003
  • Flows in a regenerative pump were calculated for several flow-rates, using the CFX-Tascflow. The calculated results show the vortex structure in the impeller and side channel. The predicted performance shows considerable discrepancy from the measured values for low flow rates. Main source of the difference is the leakage flow of pump strongly affecting the performance of pump. A simple correlation was proposed using calculated leakage flows through the simplified passage. One dimensional analysis were made for the recirculating flow and angular momentum transfer using calculated three dimensional data base.

DYNAMICAL EVOLUTION OF ROTATING SINGLE-MASS STELLAR CLUSTER

  • ARDI ELIANI;SPURZEM RAINER;MINESHIGE SHIN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.207-210
    • /
    • 2005
  • We study the influence of rotation on the dynamical evolution of collisional single-mass stellar clusters up to core-collapse by using N-body simulations. Rotating King models which are characterized by dimensionless central potential parameter $W_o$ and the rotation parameter $W_o$ are used as initial models. Our results show that inner shells slowly contract until core-collapse phase is reached, followed by a slow expansion. Angular momentum is transported outward, while the core is rotating even faster than before, as predicted by gravogyro catastrophe theory. We confirm that rotation plays an important role in accelerating the dynamical evolution of stellar cluster, in particular in accelerating the core collapse.

EVOLUTION OF SELF-GRAVITATING GAS DISKS UNDER THE INFLUENCE OF A ROTATING BAR POTENTIAL

  • YUAN CHI;YEN DAVID C. C.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.197-201
    • /
    • 2005
  • It is well known that a rotating bar potential can transport angular momentum to the disk and hence cause the evolution of the disk. Such a process is particularly important in disk galaxies since it can result in fuelling AGNs and starburst ring activities. In this paper, we will present the numerical simulations to show how this mechanism works. The problem, however, is quite complicated. We classify our simulations according to the type of Lindbald resonances and try to single out the individual roles they play in the disk evolution. Among many interesting results, we emphasize the identification of the origin of the starburst rings and the dense circumnuclear molecular disks to the instability of the disk. Unlike most of the other simulations, the self-gravitation of the disk is emphasized in this study.