• Title/Summary/Keyword: Angular error

Search Result 313, Processing Time 0.024 seconds

Preliminary Performance Analysis of Satellite Formation Flying Testbed by Attitude Tracking Experiment (자세추적 실험을 통한 인공위성 편대비행 테스트베드의 예비 성능분석)

  • Eun, Youngho;Park, Chandeok;Park, Sang-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • This paper presents preliminary performance analysis of a satellite formation flying testbed, which is under development by Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University. A model reference adaptive controller (MRAC) with a first-order reference model is chosen to enhance the response of reaction wheel system which is subject to uncertainties caused by unmodelled dynamics and measurement noise. In addition, an on-line parameter estimation (OPE) technique based on the least square is combined to eliminate the effect of angular measurement noise by estimating the moment of inertia. Both numerical simulations and hardware experiments with MRAC support the effectiveness and applicability of the adaptive control scheme, which maintains the tracking error below $0.25^{\circ}$ for the entire time span. However, the high frequency control input generated in hardware experiment strongly suggests design modifications to reduce the effect of deadzone.

Design of a Variable Sampling Rate Tracking Filter for a Phased Array Radar (위상배열 레이다를 위한 가변 표본화 빈도 추적 필터의 설계)

  • Hong, Sun-Mog
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

Straightness Measurement Technique for a Machine Tool of Moving Table Type using the Profile Matching Method (이동테이블형 공작기계에서의 형상중첩법을 이용한 진직도 측정기술)

  • 박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.400-407
    • /
    • 1995
  • The straightness property is one of fundamental geometric tolerances to be strictly controlled for guideways of machine tools and measuring machines. The staightness measurement for long guideways was usually difficult to perform, and it needed additional equipments or special treatment with limited application. In this paper, a new approach is proposed using the profile matching technique for the long guideways, which can be applicable to most of straghtness measurements. An edge of relativelly sthort length is located along a divided section of a long guideway, and the local straightness measurement is performed. The edge is then moved to the next section with several positions overlap. After thelocal straightness profile is measured for every section along the long guideway with overlap, the global straightness profile is constructed using the profile matching technique based on theleast squares method. The proposed techinique is numerically tested for two cases of known global straightness profile arc profile and irregular profile and those profiles with and without random error intervention, respectively. When norandom errors are involved, the constructed golval profile is identical to the original profile. When the random errors are involved, the effect of the number of overlap points are investigated, and it is also found that the difference between the difference between the constructed and original profiles is very close to the limit of random uncertainty with juist few overlap points. The developed technique has been practically applied to a vertical milling machine of moving table type, and showed good performance. Thus the accuracy and efficiency of the proposed method are demonstrated, and shows great potential for variety of application for most of straightness measuirement cases using straight edges, laser optics, and angular measurement equipments.

  • PDF

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

A Study on External Effects on Peeling-off Behavior of Adhesive Tape (접착 테이프 박리거동에 미치는 외부효과에 관한 연구)

  • Han, Won Heum;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • In order to describe external effects on the behavior of the adhesive tape, the semi-rigid body cylinder chain model for adhesive tape has been proposed as follows. Firstly the behavior of the tape is in detail investigated while it's being pulled off from the plate, and subsequently a relevant phenomenological model is designed. Then all the contributors affecting the force to peel out the tape from plate (hereafter, the pull out force) are clearly defined and their sensitivity analyses are made to set up the experimental reference condition, under which the angular dependence of the pull out force is measured in every $10^{\circ}$. The experimental data turn out to be in good agreement with the theoretical ones by our model within the measurement error, and the effects due to other factors are proved to be well explained from the phenomenological viewpoint. From these results, the concept of this study might be expected to be very useful for the test and evaluation of PSA types of adhesive tape.

Comparison of the Immediate Effect of the Whole-body Vibration on Proprioceptive Precision of the Knee Joint Between Barefoot and Shoe-wearing Conditions in Healthy Participants

  • Lee, Yu-bin;Hwang, Ui-jae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.108-116
    • /
    • 2021
  • Background: Whole-body vibration (WBV) has been used to alleviate proprioceptive damage by musculoskeletal and neurological conditions. However, no study has determined whether wearing shoes while applying WBV can affect proprioception precision of the knee joint. Objects: This study aimed to determine the differences in the proprioceptive precision of the knee joint before and after WBV and to compare the proprioceptive precision of the knee joint between barefoot and shoe-wearing conditions. Methods: This study recruited 33 healthy participants. A passive-to-active angle reproduction test was used to measure the proprioception precision of the knee joint using an electrogoniometer, and the target angle was set to a knee flexion of 30°. Proprioception precision was calculated using the error angle (angular difference from 30°). Proprioceptive precision was measured in weight-bearing and non-weight-bearing positions before and after applying WBV for 20 minutes at 12 Hz in barefoot and shoe-wearing conditions. Mixed repeated analysis of variance was used to determine the differences in changes in the proprioceptive precision of the knee joint according to foot conditions. Results: There were significant improvements in the weight-bearing (p = 0.002) and non-weight-bearing (p < 0.001) proprioceptive precision of the knee joint after applying WBV. However, there was no significant difference in the change in proprioceptive precision of the knee joint after applying WBV between the barefoot and shoe-wearing conditions. Conclusion: WBV stimulation had an immediate effect on improving the proprioceptive precision of the knee joint. However, foot conditions (barefoot or shoe-wearing) during WBV application did not influence the proprioceptive precision of the knee joint.

A study on the correlation of the structural integrity's reduction factors using parametric analysis (매개변수 해석을 이용한 구조물 건전도 저감 영향인자 상관성 연구)

  • La, You-Sung;Park, Min-Soo;Koh, Sungyil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.485-502
    • /
    • 2021
  • In order to evaluate the impact of ground subsidence and superstructures that are inevitably caused by tunnel excavation, a total of seven major influencing factors of surface subsidence and structural soundness reduction were set, and a Parameter Study using numerical analysis was conducted. Stability analysis was performed using scheme of Boscardin and Cording method and the maximum subsidence amount and the angular displacement, and correlation analysis was performed for each major influencing factor. In addition, it was applied that used the mutual behavior of the ground and the structure by parameter analysis in the site of the 𐩒𐩒𐩒 tunnel located in Hwaseong-si, Gyeonggi-do, and the applicability of the site was analyzed. As a result, the error was found to be 1.0%, and it could be used as a basic material for determining the appropriate tunnel route under various conditions when evaluating the stability of the structure according to tunnel excavating at the design stage.

Sex determination from lateral cephalometric radiographs using an automated deep learning convolutional neural network

  • Khazaei, Maryam;Mollabashi, Vahid;Khotanlou, Hassan;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.239-244
    • /
    • 2022
  • Purpose: Despite the proliferation of numerous morphometric and anthropometric methods for sex identification based on linear, angular, and regional measurements of various parts of the body, these methods are subject to error due to the observer's knowledge and expertise. This study aimed to explore the possibility of automated sex determination using convolutional neural networks(CNNs) based on lateral cephalometric radiographs. Materials and Methods: Lateral cephalometric radiographs of 1,476 Iranian subjects (794 women and 682 men) from 18 to 49 years of age were included. Lateral cephalometric radiographs were considered as a network input and output layer including 2 classes(male and female). Eighty percent of the data was used as a training set and the rest as a test set. Hyperparameter tuning of each network was done after preprocessing and data augmentation steps. The predictive performance of different architectures (DenseNet, ResNet, and VGG) was evaluated based on their accuracy in test sets. Results: The CNN based on the DenseNet121 architecture, with an overall accuracy of 90%, had the best predictive power in sex determination. The prediction accuracy of this model was almost equal for men and women. Furthermore, with all architectures, the use of transfer learning improved predictive performance. Conclusion: The results confirmed that a CNN could predict a person's sex with high accuracy. This prediction was independent of human bias because feature extraction was done automatically. However, for more accurate sex determination on a wider scale, further studies with larger sample sizes are desirable.

Halo CME mass estimated by synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2021
  • In this study, we suggest a new method to estimate the mass of a halo coronal mass ejection (CME) using synthetic CMEs. For this, we generate synthetic CMEs based on two assumptions: (1) the CME structure is a full ice-cream cone, (2) the CME electron density follows a power-law distribution (ρcme0r-n). The power-law exponent n is obtained by minimizing the root mean square error between the electron number density distributions of an observed CME and the corresponding synthetic CME at a position angle of the CME leading edge. By applying this methodology to 57 halo CMEs, we estimate two kinds of synthetic CME mass. One is a synthetic CME mass which considers only the observed CME region (Mcme1), the other is a synthetic CME mass which includes both the observed CME region and the occulted area larger than 4 solar radii (Mcme2). From these two cases, we derive conversion factors which are the ratio of a synthetic CME mass to an observed CME mass. The conversion factor for Mcme1 ranges from 1.4 to 3.0 and its average is 2.0. For Mcme2, the factor ranges from 1.8 to 5.0 with the average of 3.0. These results imply that the observed halo CME mass can be underestimated by about 2 times when we consider the observed CME region, and about 3 times when we consider the region including the occulted area. Interestingly these conversion factors have a very strong negative correlation with angular widths of halo CMEs.We also compare the results with the CME mass estimated from STEREO observations.

  • PDF