• Title/Summary/Keyword: Angular Information

Search Result 444, Processing Time 0.023 seconds

Kinematic Analysis of the Badminton Drive Motion (배드민턴 드라이브 동작의 운동학적 분석)

  • Wei, Lin-Lin;Oh, Cheong-Hwan;Jeong, Ik-Su;Park, Chan-Ho;Lee, Jeong-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • This study is aimed at providing information on injury prevention and skill improvement by inducing the accurate movements in exercise as well as understanding the principles of badminton drive movements. Movement displacement of racket head showed the similar patterns among those surveyed but, it seemed that slight differences resulted from external factors such as height, length of brachial and forearm and individual trend of swing locus. Regarding upper joint angle per phase, the angles of shoulder joint, elbow joint and wrist joint were closely associated in taking drive movements and they supported the segment order theory that power was conveyed from proximal into distal. It was shown that angular velocity of upper joint became larger in follow through movement after impact among all those surveyed, which meant the importance of follow through in racket sports such as badminton. In conclusion, this follow through movement acts as an important factor in racket sports in terms of pose stability maintenance, pose correction of movements and injury prevention of joints. In summary, when swings are made according to segment order theory, efficient movements can be taken.

DIFFERENCE OF CALCIUM FLUORIDE FORMATION BETWEEN THE ENAMEL AND DENTIN AFTER FLUORIDE APPLICATION IN VITRO (불소적용시 법랑질과 상아질에서 불화칼슘형성의 차이에 관한 실험적 연구)

  • Kim, Jae-Gon;Kweon, Seon-Ja;Yun, Hyun-Du;An, Soo-Hyeon;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.209-224
    • /
    • 1998
  • The purpose of this study was to compare the amount of calcium fluoride deposited on the enamel and dentin surface and to obtain information on the morphological change and crystallographic details of mineral deposition after 12,000ppm APF application in vitro. The bovine enamel and dentin blocks were randomly assigned to eight groups according to artificial caries lesion formation and difference of fluoride application time. The fluoride concentration and morphological characteristics on the treated enamel and dentin surface were investigated by using fluoride quantitative analysis and SEM. The powdered enamel and dentin of the intact bovine incisors were prepared for the X-ray diffraction analysis. The following results were obtained. 1. The amounts of KOH-soluble fluoride on the carious enamel and dentin surface after 24h APF application were higher than after only 5min APF application(p<0.05), but in the case of the sound enamel and dentin surface were similar after 5min and 24h application (P>0.05). The fluoride content was highly increased in the carious dentin as compared with sound dentin after APF application(P<0.05). 2. The carious enamel surface after APF application, the demineralized enamel surface were recovered a more dense enamel surface and precipitation of crystal was observed a distintive surface layer of spherical globules of about 1 m diameter. In the case of the fluorided carious dentin surface, precipitation of calcium fluoride-like material was deposited both inside the dentinal tubules as well as in the intertubular regions. 3. The crystallographic structure of powdered enamel and dentin after 24h APF application had large crystallities of apatite and CaF2 diffraction peaks in the enamel as compared with dentin. The diffraction data collected from the 27.50-29.50(2) angular range of the powdered enamel, the (105) apatite, (225) apatite and (111) CaF2 peaks of the enamel crystallities were detected after 24h APF application.

  • PDF

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF