• Title/Summary/Keyword: Angular Error

Search Result 310, Processing Time 0.023 seconds

Statistical Analysis of Ranging Errors by using $\beta$-Density Angular Errors due to Heading Uncertainty ($\beta$ - 분포를 갖는 센서의 방향각 오차로 인한 거리 오차의 통계적 분석)

  • 김종성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.100-106
    • /
    • 1984
  • Traditional methods for estimating the location of underwater target, i.e. the triangulation method and the wavefront curvature method, have been utilized. The location of a target is defined by the range and the bearing, which estimates can be obtained by evaluating the time delay between neighboring sensors. Many components of error occur in estimating the target range, among which the error due to the fluctuation of heading angle is outstanding. In this paper, the wavefront curvature method was used. We considered the error due to the heading fluctuation as the $\beta$-density process, from which we analized the range estimates with $\beta$-density function exist in some finite limits, and its mean value and variation are depicted as a function of true range and heading fluctuation. Given heading angles and sensor separation, maximum estimated heading errors are presented as a function of true range.

  • PDF

Vehicle Trajectory Control using Fuzzy Logic Controller (퍼지논리제어기를 이용한 차량의 궤적제어)

  • 이승종;조현욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

Corrective machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • 박천홍;이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.380-384
    • /
    • 1997
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. Reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, correctwe machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysls method proposed in the previous paper. These processes can be rtcrated if the analized motion errors are worse than target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail after corrective machining are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm IS effective to acquire the corrective machming information to improve the accuracy of hydrostatic table.

  • PDF

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

Control and data analysis of a measuring machine for cams (캠 형상 전용 측정기 제어 및 해석 S/W 개발)

  • 최동우;강재관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.150-153
    • /
    • 1997
  • In this paper, a control and data analysis S/W of a dedicated measuring machine for cams is developed. A rotary encoder is employed to measure the angular displacement of the motor, and a linear scale does the linear displacement of the prove. The design and measuring data are interpolated by cubic spline curves respectively to compute the error which is defined by the maximum distance between two curves. Further, optimization module to find the exact error is also developed to remove the error occurred due initial measuring position. The developed system takes only 6 minutes to measure the cam and to analyze the measuring data while the CMM takes about 1 hours even with a skilled operator.

  • PDF

Measurement of Five DOF Motion Errors in the Ultra Precision Feed Tables (초정밀 이송테이블의 5 자유도 운동오차 측정)

  • Oh Yoon Jin;Park Chun Hong;Hwang Joo Ho;Lee Deug Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.135-141
    • /
    • 2005
  • Measurement of five DOF motion errors in a ultra precision feed table was attempted in this study. Yaw and pitch error were measured by using a laser interferometer and roll error was measured by using the reversal method. Linear motion errors in the vertical and horizontal directions were measured by using the sequential two point method. In this case, influence of angular motion errors was compensated by using the previously measured ones by the laser interferometer and the reversal method. The capacitive type sensors and an optical straight edge were used in the reversal method and the sequential two point method. Influence of thermal deformation on sensor jig was investgated and minimized by the periodic measurement according to the variation of room temperature. Deviation of gain between sensors was also compensated using the step response data. 5 DOF motion errors of a hydrostatic table driven by the linear motor werer tested using the measurement method. In the horizontal direction, measuring accuracies for the linear and angular motion were within ${\pm}0.02\;{\mu}m$ and ${\pm}0.04$ arcsec, respectively. In the vertical direction, they were within ${\pm}0.02{\mu}m$ and ${\pm}0.05$ arcsec. From these results, it was found that the introduced measurement method was very effective to measure 5 DOF motion errors of the ultra precision feed tables.

Comparison of measurement errors between conventional, digital cephalographs and hardcopies (일반 및 디지탈 측모두부방사선 규격사진, 하드카피의 계측오차 또는 확대율 비교)

  • Lee, Tae-Ho;Lee, Ki-Soo;Nam, Jong-Hyun;Kang, Yoon-Goo
    • The Journal of the Korean dental association
    • /
    • v.47 no.5
    • /
    • pp.282-290
    • /
    • 2009
  • The purpose of this study was to evaluate the measurement error between conventional films, digital cephalographs and hardcopy. The material consisted of 29 cephalographs which used image modality of Asahi CX-90SP in the Kyung Hee University Dental Hospital. One observer measured fiducial measurements at an interval of four weeks. Measurement error was tested by Dahlberg's formula. A paired t-test was used to detect it between each modality. The results are as follows; 1. The monitor-displayed digital image showed enlargement compared with the conventional image. The cephalometric measurements of the monitor-displayed digital image and conventional image were no statistically significant difference except SNB. 2. In conventional image, measurement errors of linear and angular measurements were 0.23mm, $0.36^{\circ}$, respective. In monitor-displayed digital image, measurement errors of linear and angular measurements were 0.63mm, $0.48^{\circ}$ respective. 3. The reduction ratio of hardcopy was 1.01% compared to the monitor-displayed digital image. Based on the results, it indicates that the digital cephalographs and hardcopy using storage phosphor digital radiography showed the same accuracy as the conventional films in clinical use.

  • PDF

Clinical problems of computer-guided implant surgery

  • Moon, Seong-Yong;Lee, Kyoung-Rok;Kim, Su-Gwan;Son, Mee-Kyoung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: The utilization of a cone-beam computed tomography (CT)-assisted surgical template allows for predictable results because implant placement plans can be performed in the actual surgery. In order to assess the accuracy of the CT-guided surgery, angular errors and shoulder/apex distance errors were evaluated by data fusion from before and after the placement. Methods: Computer-guided implant surgery was performed in five patients with 19 implants. In order to analyze differences of the implant fixture body between preoperative planned implant and postoperative placed implant, angular error and distance errors were evaluated. Results: The mean angular errors between the preoperative planned and postoperative placed implant was $3.84^{\circ}{\pm}1.49^{\circ}$; the mean distance errors between the planned and placed implants were $0.45{\pm}0.48mm$ horizontally and $0.63{\pm}0.51mm$ vertically at the implant neck and $0.70{\pm}0.63mm$ horizontally and $0.64{\pm}0.57mm$ vertically at the implant apex for all 19 implants. Conclusions: It is important to be able to utilize these methods in actual clinical settings by improving the various problems, including the considerations of patient mouth opening limitations, surgical guide preparation, and fixation.

Multiple Target Angle Tracking Algorithm with Efficient Equation for Angular Innovation (효율적으로 방위각 이노베이션을 구하는 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo;Lee, Jang-Sik;Lee, Kyun-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, Ryu et al. proposed a multiple target angle tracking algorithm using the angular innovation extracted from the estimated signal subspace. This algorithm obtains the angles of targets and associates data simultaneously. Therefore, it has a simple structure without data association problem. However it requires the calculation of the inverse of a real matrix with dimension (2N+1)${\times}$(2N+1) to obtain the angular innovations of N targets. In this paper, a new linear equation for angular innovation is proposed using the fact that the projection error is zero when the target steering vector is projected onto the signal subspace. As a result, the proposed algorithm dose not require the matrix inversion and is computationally efficient.

  • PDF

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.