• 제목/요약/키워드: Angle of slope

검색결과 796건 처리시간 0.029초

절리암반에서의 근접사면굴착에 의한 기존터널 거동에 대한 실험적 연구 (Experimental study on behavior of the existing tunnel due to adjacent slope excavation in a jointed rock mass)

  • 이진욱;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2009
  • 절리암반에시 기존 터널에 근접하여 사면굴착시 터널의 거동은 절기와 굴착사면상태의 영향을 받는다. 본 논문에서는 기존터널에 근접하여 지반을 굴착시, 절리각도와 굴착사면 경사의 영향을 파악하기 위하여 2축 실대형 모형시험장치(3.1 m*3.1 m*0.50 m(폭*높이*길이))를 이용한 시험을 수행하였다. 절리암반은 콘크리트 블록을 사용하여 모사하였으며 터널은 1/10축척(직경 0.6 m)으로 제작하였다. 절리각도는 $0^{\circ}$부터 $90^{\circ}$까지 변경이 가능하며, 굴착사면 경사는 $30^{\circ}$에서부처 $90^{\circ}$까지 가능하도록 되어 있다. 실대형 시험을 통하여 절리각도와 사면경사에 따른 터널거동과 수평지중변위를 계측, 분석하였다. 분석결과 절기각도와 사면경사가 크면 클수록, 터널 내공변위와 터널 라이닝 모멘트가 커지는 경향이 있었으며 수평지중변위 또한 절리각도와 사면경사에 많은 영향을 받고 있어 향후 사면보강에 있어 효율적 방안제시를 위한 기초자료로 활용이 가능할 것이다.

동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계 (Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

원심모형시험에 의한 사석재의 내부마찰각 추정 (Estimation of Friction Angle of Rubble Mound by Centrifuge Model Tests)

  • 유남재;박병수;정길수;이종호
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.153-159
    • /
    • 2002
  • This paper is an experimental work of estimating friction angle of very coarse grained soil such as rubble mound by performing laboratory experiments. Two crushed rocks of rubble mound were used for tests. Triaxial compression tests with drained conditions were performed to measure friction angles of soils prepared by mixing the crushed soil having an identical coefficient of uniformity with different maximum grain size distribution. Centrifuge model experiments with those soils were also performed to measure angle of repose and to estimate friction angle of soil from measuring the slope of slip line in the active stress state. Model tests were carried out by changing the G-levels of 1G and 50G. From triaxial compression tests, the measured value of friction angle of soil is in the range of $41{\sim}57^{\circ}$. The measured value of repose angle is in the range of $32{\sim}35^{\circ}$. The values of friction angle are found not so sensitive to the maximum grain size of soil as long as the coefficient of uniformity is identical. Estimated value of friction angle from measuring the slope of slip line in the active stress state is in the range of $30{\sim}46^{\circ}$. Thus, the estimated angle of friction are found to be greater in the order of the measured angle of repose, the estimated value from the slope of active state, and triaxial compression test results. On the other hand, the measured values of friction angle from triaxial tests were compared with empirical equations, based on the relation between friction angle and void ratio. Equations proposed by Helenelund(l966) and Hansen(1967) found to be relatively reliable to estimate friction angles of soil.

  • PDF

Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구 (A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion)

  • 김형민;이벽규;우재경;허익;이준기;이수곤
    • 한국지반환경공학회 논문집
    • /
    • 제20권5호
    • /
    • pp.13-21
    • /
    • 2019
  • 급경사($65^{\circ}{\sim}85^{\circ}$)로 자연환경에서 장기간 안정한 상태로 유지되고 있는 깎기 또는 자연 상태의 암반사면이 다수 존재한다. 설계 실무측면에서 이와 유사한 암반상태 및 지질구조로 이루어진 지반을 양호한 연속체 암반사면으로 정의하고 있으며, 이 암반사면의 경사 결정 과정 중에 설계 및 시공 초기 단계의 안정해석 절차 단계에서 연속체 암반의 지반특성 평가방법을 수립하는 것이 중요하게 될 것이다. 이 연구에서는 급경사로 설계 가능한 양호한 연속체 암반사면의 안정해석 과정에서 지반정수 적용에 필요한 강도정수를 Hoek-Brown 파괴기준을 활용하여 실무적으로 산정하는 방안을 제안하고 이와 함께 급경사 암반사면의 안정해석을 통해 설계 적용성을 평가하였다. 기존 강도정수 산정방법은 작은 구속응력 변화에도 H-B파괴 포락선에 상응하는 등가 M-C강도정수가 민감하게 변화하므로 설계에서 실무적으로 활용하기가 부적합하였다. 이 문제점을 보완하기 위해 등각분할법으로 등가 M-C강도정수를 산정하는 방안을 제시하였다. 등각분할법의 설계 적용성을 확인하기 위해 기존 실시설계 현장에서 조성된 깎기 사면의 경사 변화에 따른 안전율 및 변위 결과를 검토하였다. 안전율은 1:0.5 사면에서 Fs=16~59이고, 1:0.3 사면에서 Fs=12~52이며, 대부분 10~12%의 감소를 보인다. 변위는 1:0.5 사면에서 0.126~0.975mm이고, 1:0.3 사면에서 0.152~1.158mm이며, 10~15%의 증가를 나타낸다. 이는 정규 비례의 미미한 변화이며, 안정성 측면에서는 양호한 상태이다. 설계 실무측면에서, H-B파괴기준에서 유도된 등각분할법으로 산정한 강도정수를 연구대상 암반사면과 유사한 양호한 암반에 대해 범용적인 강도정수로 적용하여도 안정적이고 경제적인 결과를 도출할 수 있다는 것을 확인하였다. 암반사면에 영향을 미치는 단층이 분포하지 않는 지반에서는 한계평형해석(LEM)과 유한요소해석(FEM)으로 안정해석하는 절차도 실무적으로 무난한 것으로 검토되었다. 연구대상 사면을 양호한 상태의 암반조건으로 선정하여 연구를 수행하였으나 좀 더 다양한 암반조건(터널 포함)에 보편적으로 적용할 수 있는지에 대한 검증 작업은 추후 연구과제가 될 것이다.

Evaluation of Articular Eminence Morphology in Patients with Spontaneous Temporomandibular Joint Dislocation Using Cone Beam Computed Tomography

  • Kim, Ji Hoo;Park, Hyun-Jeong;Seo, Yo-Seob;Ryu, Ji-Won;Ahn, Jong-Mo
    • Journal of Oral Medicine and Pain
    • /
    • 제47권1호
    • /
    • pp.27-37
    • /
    • 2022
  • Purpose: This study aimed to broaden our understanding of the predisposing factor and treatment of dislocation by analyzing and evaluating the morphology of the articular eminence (AE) in subjects with temporomandibular joint (TMJ) dislocation using cone beam computed tomography (CBCT). Methods: The subjects were divided into two groups: dislocation (31 subjects) and control (32 subjects). CBCT was used to examine 126 TMJs in 63 subjects (26 males, 37 females). The height, width, and posterior slope of the AE were measured in the parasagittal plane. The posterior slope was measured using the "top-roof line angle (TR angle)" method and the "best-fit line angle (BF angle)" method. The AE on the left side (AEL) and the AE on the right side (AER) of the subjects in the dislocation group were separately analyzed and compared with the control group after taking measurements. The average value of both sides was used when comparing with subjects with bilateral dislocation. Results: Dislocations were more frequent in females (67.7%) than in males (32.3%). The dislocation group showed a gentler TR angle than the control group in the AER and in the average of AE on the both sides (AEB). The same group also showed a wider AE in the AEL and the AER (p<0.05). In subjects with unilateral dislocation, the width of the AE with dislocation was narrower and the TR angle and BF angle was steeper than the other side without dislocation (p<0.05). Conclusions: In subjects with unilateral TMJ dislocation, the posterior slope of the AE is steeper, and the width is narrower at the site of dislocation compared to the site without dislocation. However, in subjects with bilateral TMJ dislocation, AEB were wider, and the mean value of the posterior slope of AEB was gentler than that of the control group.

태양복사모델을 이용한 태양전지판의 최적 경사각에 대한 연구 (The Study on the Optimal Angle of the Solar Panel using by Solar Radiation Model)

  • 지준범;최영진;이규태
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.64-73
    • /
    • 2012
  • The angle of solar panels is calculated using solar radiation model for the efficient solar power generation. In ideal state, the time of maximum solar radiation is represented from 12:08 to 12:40 during a year at Gangneung and it save rage time is12:23. The maximum solar radiation is 1012$W/m^2$ and 708$W/m^2$ inc lear sky and cloudy sky, respectively. Solar radiation is more sensitive to North-South (N-S) slope angle than East-West (E-W) azimuth angle. Daily solar radiation on optimum angle of solar panel is higher than that on horizontal surface except for 90 days during summer. In order to apply to the real atmosphere, the TMY (typical meteorological Year) data which obtained from the 22 solar sites operated by KMA(Korea Meteorological Administration) during 11 years(2000 to 2010) is used as the input data of solar radiation model. The distribution of calculated solar radiation is similar to the observation, except in Andong, where it is overestimated, and in Mokpo and Heuksando, where it is underestimated. Statistical analysis is performed on calculated and observed monthly solar radiation on horizontal surface, and the calculation is overestimated from the observation. Correlationis 0.95 and RMSE (Root Mean Square Error) is10.81 MJ. The result shows that optimum N-S slope angles of solar panel are about $2^{\circ}$ lower than station latitude, but E-W slope angles are lower than ${\pm}1^{\circ}$. There are three types of solar panels: horizontal, fixed with optimum slope angle, and panels with tracker system. The energy efficiencies are on average 20% higher on fixed solar panel and 60% higher on tracker solar panel than compared to the horizontal solar panel, respectively.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

근위경골절골술에서 해부학적 축과 역학적 축의 변화가 경골후방경사각에 미치는 영향 (The Effect of Anatomical Axis and Mechanical Axis on Change of Posterior Tibial Slope Angle in PTO(Proximal Tibial Osteotomy))

  • 신은지;김철웅;이호상;배지훈;왕준호;;오동준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1543-1546
    • /
    • 2008
  • The purpose of this study was to investigate factors affecting the change of tibial posterior slope and introduce a mathematical model which calculate, through 3-dimensional analysis of the proximal tibia, how the angle of the opening wedge along the anteromedial tibial cortex influences the tibial posterior slope and valgus correction when performing a medial open wedge osteotomy. This mathematical model with navigation system can be guidelines which provide surgeons on preoperative and intraoperative measurements to maintain or correct the tibial slope and to obtain the desired valgus correction of the lower limb during an opening wedge osteotomy.

  • PDF

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.