• Title/Summary/Keyword: Angle Changes

Search Result 1,694, Processing Time 0.024 seconds

Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring (농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1343-1356
    • /
    • 2022
  • Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.

Application of Korean Rhus Lacquer Containing Tung Oil For Exterior Coatings (동유를 함유하는 목조주택 외장용 옻칠도료의 적용)

  • Song, Byong-Min;Lee, Byoung-Hoo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.81-90
    • /
    • 2003
  • In this study, we investigated the weathering properties of Korean Rhus lacquers containing tung oil and their potential use as exterior coatings. The finished lacquers were prepared with a raw Korean Rhus lacquer or refined Korean Rhus lacquer content of 10, 20, 30 and 40 wt.% (corresponding to ratios of 10/90, 20/80, 30/70 and 40/60 by weight of Korean Rhus lacquer/tung oil, respectively). The curing temperature of the prepared lacquer increased with increasing the content of the raw Korean Rhus lacquer. This increased curing temperature is related to higher proportion of hydroxyl groups in the prepared lacquer, due to the content of the raw Korean Rhus lacquer. In accelerated weathering testing, the changes in the gloss and contact angle of the prepared lacquers showed a similar trend to that of traditional exterior oil stain. In addition, the prepared lacquers containing tung oil showed greater discoloration than traditional exterior oil stain. However, the discoloration of the prepared lacquer with a raw Korean Rhus lacquer content of 40 wt.%, and that of the prepared lacquer with refined Korean Rhus lacquer contents of 30 wt.% and 40 wt.%, showed a similar trend to that of traditional exterior oil stain. Consequentially, these prepared lacquers showed a potential for being used as exterior coatings.

Development of Expandable Steel Pipe Piles to Improve Bearing Capacity (지지력 향상을 위한 확장형 강관말뚝에 관한 연구)

  • Kim, Uiseok;Kim, Junghoon;Kim, Jiyoon;Min, Byungchan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.5-13
    • /
    • 2021
  • Expandable steel pipe piles have been developed to ensure stability and reduce construction costs during underground floor remodeling and extension work. Expandable steel pipe piles are more economical and stable than micropiles. Extensible steel pipe pile is a method of improving the performance of steel pipes by expanding steel pipes underground. In this paper, the changes in buckling strength according to the shape of steel pipes in an extended steel pipe pile were identified, a numerical analysis model was developed to determine the expended part effect of bumps due to steel pipe expansion, and the optimal steel pipe expansion was calculated through material tests. The larger the expansion diameter of the steel pipe and the greater the number of expanded part, the greater the buckling strength. Numerical results showed that the number of expanded part has a greater effect on buckling strength than the expansion rate. When the expansion rate is more than 1.2 times, it can be seen that as the number of expanded part increases, the effect of increasing buckling strength increases significantly. It was also noted that the expanded part effect of the bumps occur significantly when the extension angle is less than 45° and the expansion rate is 1.3 times higher. When the steel pipe is failure, the expanded rate is 20 to 32%, averaging 25.4%. Through the material test, it was analyzed that it is desirable to limit the maximum expansion rate for performing steel pipes to 16%.

A case of oral rehabilitation using implant fixed prosthesis (skeletal class III malocclusion patient) (골격성 III급 부정교합을 가진 환자에서 임플란트 지지 고정성 보철을 이용한 구강회복 증례)

  • Minjung Kang;Minji Sun;Hong Seok Moon;Jong-Eun Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • When the patient with class III malocclusion needs extensive oral rehabilitation due to multiple missing teeth, accurate diagnosis, and careful analysis, such as the patient's occlusal relationship, facial changes, and evaluation of the temporomandibular joint are essential. Orthognathic surgery is often performed for aesthetic improvement, depending on the patient's chief complaint. If it is not possible due to certain circumstances, partial aesthetic improvement can be achieved through minimal elevation of the vertical dimension. As this patient may have unexpected issues, such as temporomandibular joint disorder, oral habits like bruxism, and masticatory muscle tension, it was determined whether the patient could adjust to a reversible temporary removable partial denture. After this, the maxillary implant-supported fixed prostheses and the mandibular fixed prostheses were used to achieve stable posterior support and to partially improve the maxillary anterior esthetics. The patient was satisfied with the results both aesthetically and functionally. The prognosis is expected to be good if regular check-ups are conducted.

Characteristics of Deformation and Shear Strength of Parallel Grading Coarse-grained Materials Using Large Triaxial Test Equipment (대형삼축시험에 의한 상사입도 조립재료의 변형 및 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.57-67
    • /
    • 2009
  • Along with the advanced construction technologies, the maximum size of coarse aggregate used for dam construction ranges from several cm to 1m. Testing the original gradation samples is not only expensive but also causes many technical difficulties. Generally, indoor tests are performed on the samples with the parallel grading method after which the results are applied to the design and interpretation of the actual geotechnical structure. In order to anticipate the exact behavior characteristics for the geotechnical structure, it is necessary to understand the changes in the shear behavior. In this study, the Large Triaxial Test was performed on the parallel grading method samples that were restructured with river bed sand-gravel, with a different maximum size, which is the material that was used to construct Dam B in Korea. And the Stress - Strain characteristics of the parallel grading method samples and the characteristics of the shear strength were compared and analyzed. In the test results, the coarse-grained showed strain softening and expansion behavior of the volume, which became more obvious as the maximum size increased. The internal angle of friction and the shear strength appeared to increase as the maximum size of the parallel grading method sample increased.

Structural and Electrical Properties of (La0.7-xCex)Sr0.3MnO3 Ceramics ((La0.7-xCex)Sr0.3MnO3 세라믹스의 구조적, 전기적 특성)

  • Tae-Yeon In;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.249-254
    • /
    • 2023
  • La0.7-xCexSr0.3MnO3 specimens were fabricated by a solid state reaction method and structural and electrical properties with variation of Ce4+ contents were measured. All specimens exhibited a polycrystalline rhombohedral crystal structure, and the (110) peaks were shifted to low angle side with increasing the amount of Ce4+ contents. As Ce4+ ions with different ion radii and charges are substituted with La3+ ions, electrical properties are thought to be affected by changes in the double exchange interaction between Mn3+-Mn4+ ions due to distortion of the unit lattice, a decrease in oxygen vacancy concentration, and an increase in lattice defects. Resistivity gradually decrease as the amount of Ce4+ added increased, and negative temperature coefficient of resistance (NTCR) properties were shown in all specimens. In the La0.5Ce0.2Sr0.3MnO3 specimens, electrical resistivity, TCR and B-value were 31.8 Ω-cm, 0.55%/℃ and 605 K, respectively.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

A Study on the Control of Hygroscopicity and Hardness in Polymer Surfaces (고분자 표면의 흡습성 및 경도 제어 연구)

  • Jinil Kim;Young Nam Jung;Doa Kim;Myung Yung Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.86-90
    • /
    • 2023
  • The packaging of electronic devices performs a protective function to ensure that their durability and reliability are not affected by changes in the operating environment caused by external factors. Recent advances in materials have led to ongoing research into bonded packaging of heterogeneous materials such as polymers and inorganic materials in electronic devices. In this packaging process, it is important to have a binding that joins the materials and ensures the operating environment, which includes adhesion to the substrate, corrosion and oxidation resistance through moisture removal, and durability. In this study, the hygroscopicity of the coating layer by modifying the polymer surface based on PVA was evaluated by controlling and measuring the contact angle, and the adhesion was confirmed by applying water-based ink and testing according to ASTM_D3363. For the durability of the polymer surface, the IPL post-treatment process was used to improve the hardness and toughness against applied voltage, and the pencil hardness test and nanoindentation test were conducted. Through this, we analyzed and proposed solutions to ensure the reliability and durability of polymer devices in polymer microfabrication against environmental factors such as moisture, temperature fluctuations and adhesion, and surface abrasion.

Effect of Mg Addition on the Microstructure and Mechanical Properties of Al-Li-Ce Alloys (Al-Li-Ce계 합금의 미세조직 및 기계적 특성에 미치는 Mg 첨가의 영향)

  • Byeong-Kwon Lee;Eun-Chan Ko;Yong-Ho Kim;Hyo-Sang Yoo;Hyeon-Taek Son;Sung-Kil Hong
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.393-399
    • /
    • 2023
  • In this study, changes in the microstructure and mechanical properties of cast and extruded Al-2Li-1Ce alloy materials were investigated as the Mg content was varied. The density decreased to 2.485, 2.46 and 2.435 g/cm3 when the Mg content in the Al-2Li-1Ce alloy was increased to 2, 4 and 6 wt%, respectively. Intermetallic compounds of Al11Ce3 were observed in all alloys, while the β-phase of Al3Mg2 was observed in alloys containing 6 wt% of Mg. In the extruded material, with increasing Mg content the average grain size decreased to 84.8, 71.6 and 36.2 ㎛, and the fraction of high-angle grain boundaries (greater than 15°) increased to 82.8 %, 88.6 %, and 91.8 %, respectively. This occurred because the increased Mg content promotes dynamic recrystallization during hot extrusion. Tensile test results showed that as the Mg content increased, both the yield strength and tensile strength increased. The yield strength reached 86.1, 107.3, and 186.4 MPa, and the tensile strength reached 215.2, 285, and 360.5 MPa, respectively. However, it is worth noting that the ductility decreased to 27.78 %, 25.65 %, and 20.72 % as the Mg content increased. This reduction in ductility is attributed to the strengthening effect resulting from the increased amount of dissolved Mg, and grain refinement due to dynamic recrystallization.