급변하는 정보의 홍수 속에서 정보의 보안과 이를 가공하고 전송하는 것이 중요한 과제로 떠오르고 있다. 초기 정보보호이론과 암호화 전송단계에서는 간단한 치환과 수학적 계산 알고리즘을 적용한 암 복호화 과정을 이용하였다. 완벽한 정보보호는 One-time pad를 이용하는 것이나 이를 적용하기에는 하드웨어와 금전적 손실이 너무 크기에 실난수가 아닌 난수성을 만족하는 의사난수를 사용하고 있다. 본고에서 제안하는 변형 시리얼 테스트는 의사난수성을 입증하는 테스트 중 시리얼테스트에서 변형된 것으로 연산속도와 효율성 면에서 보다 더 강력한 난수성임을 입증하고 있다.
Objectives: To build basic clinical data for developing an artificial intelligence algorithm for Korean herbal prescriptions for anxiety, depression, anger, and insomnia. Methods: Subjects were recruited among those who reported mild or more severe symptoms of anxiety, depression, anger, and insomnia (Anxiety: State-Trait Anxiety Inventory≥40, Depression: Beck Depression Inventory≥14, Anger: State-Trait Anxiety Inventory≥16, Insomnia: Insomnia Severity Index≥8). Clinical observation items including basic medical information and symptoms were collected from them. These data were then analyzed by experts in Hyungsang medicine, Sasang constitutional medicine, and Sanghan-Geumgwe medicine. Results and Conclusions: Experts of the three societies presented key clinical data and recommended prescriptions. Results of this study can be used as basic data for developing an artificial intelligence algorithm for Korean herbal prescriptions in the future.
Today with the sheep of information which is produced the variety is increasing geometrical progression. To recently the internet being supplied quickly, will reach and the computer users whom it uses increase and the documents which have become digital anger are increasing. From the dissertation which it sees directness it extracts a weight with possibility work and it uses it summarizes a statistics algorithm technique and a sentence. The summary literature course which the summary and the person due to a statistics algorithm summarize an agreement ratio it compares and it compares. And being more accurate like this statistical base summary method more little more, the good hit rate is high and it proposes the document summary algorithm method which is good.
In this Paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using CCD color image. To do this, we first acquire the color image from the CCD camera, and then propose the method for recognizing the expression to be represented the structural correlation of man's feature Points(eyebrows, eye, nose, mouse) It is central technology that the Process of extract, separate and recognize correct data in the image. for representation is expressed by structural corelation of human's feature Points In the Proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Had separated complexion area using color-difference of color space by method that have separated background and human's face toughly to change such as external illumination in this paper. For this, we propose an algorithm to extract four feature Points from the face image acquired by the color CCD camera and find normalization face picture and some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector. Finally, we show the Practical application possibility of the proposed method.
표정은 사람의 감정을 표현하는 대표적인 수단이다. 이러한 이유로 표정은 사람의 의도를 컴퓨터에 전하는데 효과적인 방법으로 사용될 수 있다. 본 논문에서는 2D 영상에서 사람의 표정을 보다 빠르고 정확하게 인식하기 위해 Discrete Adaboost 알고리즘과 신경망 알고리즘을 통합하는 방법을 제안한다. 1차로 Adaboost 알고리즘으로 영상에서 얼굴의 위치와 크기를 찾고, 2차로 표정별로 학습된 Adaboost 강분류기를 이용하여 표정별 출력 값을 얻으며, 이를 마지막으로 Adaboost 강분류기 값으로 학습된 신경망 알고리즘의 입력으로 이용하여 최종 표정을 인식한다. 제안하는 방법은 실시간이 보장된 Adaboost 알고리즘의 특성과 정확성을 개선하는 신경망 기반 인식기의 신뢰성을 적절히 활용함으로서 전체 인식기의 실시간성을 확보하면서도 정확성을 향상시킨다. 본 논문에서 구현된 알고리즘은 평온, 행복, 슬픔, 화남, 놀람의 5가지 표정에 대해 평균 86~95%의 정확도로 실시간 인식이 가능하다.
블록형 섬광체와 픽셀형 섬광체를 이용한 반응 깊이 측정 검출기를 설계하였으며, 층 구분 능력을 DETECT2000을 사용하여 측정하였다. 블록형 섬광체를 사용하여 민감도를 향상했으며, 반응 깊이를 측정함으로써 공간분해능을 향상했다. 위층은 블록형으로 아래층은 픽셀형 섬광체를 위치시켜 감마선과 반응한 섬광체에서 발생한 빛의 분포를 변화시켰으며, 변화된 빛의 분포의 채널별 신호 특성 분석을 통해 반응 깊이를 측정하였다. 아래층을 픽셀형 섬광체로 구성하여 평면 영상 획득 시 위층의 블록형 섬광체에서도 픽셀형 섬광체의 위치와 비슷한 곳에서 영상을 획득할 수 있었다. 앵거 알고리듬을 사용하여 16채널의 신호를 4개의 채널로 감소시켜, 신호 특성 분석을 용이하게 하였으며, 층 구분은 간단한 알고리듬을 사용하여 측정하였고 층별 약 84%의 측정 정확도를 보였다. 본 검출기를 전임상용 PET에서 사용할 경우 반응 깊이 측정을 통해 검출 시야 외곽에서의 공간분해능을 향상할 수 있을 것이다.
Purpose: Adolescents use emoticons to express their emotions in an online environment. Hence, medical experts can understand the emotions of adolescents by emoticons. The goal of this study was to investigate the relationship between various emotions and emoticons among the Korean adolescents. Methods: The questionnaire survey was conducted between September 1 and 30, 2014, involving 3,272 students in elementary schools, middle schools, and high schools affiliated in the Department of Education of the metropolitan city of Busan. A total of 1,717 students responded to the survey. The participants consisted of 806 males (46.9%), and 911 females (53.1%). Among these, there were 557 elementary school students (32.4%), 617 middle school students (35.9%), and 543 high school students (31.6%). A social networking analysis was conducted using NodeXL. Results: The frequency of emoticon use among adolescents runs in the order of joy, sadness, fear, surprise, anger, disgust, and then depression. Elementary school females mainly use emoticons to express joy; middle school females use emoticons to express sadness, surprise, anger, disgust, and depression; and high school females use emoticons to express fear. Age- and gender-specific emoticon networks were visualized by using the Haren-Korel fast multiscale algorithm. Commonly used emoticons by age and gender were expressed in the networks. Results of age- and gender-specific emoticon networks visualization show similar results of centrality of seven emoticons. Conclusion: In the digital communication environment, emoticons could be used to catch the emotions of adolescents in Korea.
Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.
Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".
In this paper, we deal with a face recognition method for the emotional face images. Since the face recognition is one of the most natural and straightforward biometric methods, there have been various research works. However, most of them are focused on the expressionless face images and have had a very difficult problem if we consider the facial expression. In real situations, however, it is required to consider the emotional face images. Here, three basic human emotions such as happiness, sadness, and anger are investigated for the face recognition. And, this situation requires a robust face recognition algorithm then we use a fuzzy Fisher's Linear Discriminant (FLD) algorithm with the wavelet transform. The fuzzy Fisherface is a statistical method that maximizes the ratio of between-scatter matrix and within-scatter matrix and also handles the fuzzy class information. The experimental results obtained for the CBNU face databases reveal that the approach presented in this paper yields better recognition performance in comparison with the results obtained by other recognition methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.