• Title/Summary/Keyword: Anger algorithm

Search Result 29, Processing Time 0.022 seconds

Design variation serial test using binary algorithm (이진 알고리즘을 이용한 변형 시리얼테스트 설계에 관한 연구)

  • Choi, Jin-Suk;Lee, Sung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.76-80
    • /
    • 2010
  • It is floating to security of information and the early assignment that it is important it processes and to transmit in inundations of information that I changed suddenly. I used the encryption/decryption process that applied simple substitution and mathematical calculation algorithm at theory and encryption transmission steps protective early information. Hardware and financial loss are using spurious random number to be satisfied with the random number anger that isn't real random number to size so much perfect information protection using One-time pad for applying this. I was transformed into serial test under a test to prove spurious random number anger, and it is into random number anger stronger, and the transformation serial test that proposes is proving it in algorithm speed and efficiency planes.

A Preliminary Study on the Construction of Clinical Data for Korean Herbal Prescription Recommendations for Anxiety, Depression, Anger, and Insomnia (불안, 우울, 분노 및 불면 증상에 대한 한의학파 처방 추천 임상 데이터 구축을 위한 기초 연구)

  • Dong-Hoon Kang;Ju-Yeon Kim;Ji-Yoon Lee;Je-Hyun Kim;Sangjun Yea;Ho Jang;Sanghun Lee;In Chul Jung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.35 no.3
    • /
    • pp.231-246
    • /
    • 2024
  • Objectives: To build basic clinical data for developing an artificial intelligence algorithm for Korean herbal prescriptions for anxiety, depression, anger, and insomnia. Methods: Subjects were recruited among those who reported mild or more severe symptoms of anxiety, depression, anger, and insomnia (Anxiety: State-Trait Anxiety Inventory≥40, Depression: Beck Depression Inventory≥14, Anger: State-Trait Anxiety Inventory≥16, Insomnia: Insomnia Severity Index≥8). Clinical observation items including basic medical information and symptoms were collected from them. These data were then analyzed by experts in Hyungsang medicine, Sasang constitutional medicine, and Sanghan-Geumgwe medicine. Results and Conclusions: Experts of the three societies presented key clinical data and recommended prescriptions. Results of this study can be used as basic data for developing an artificial intelligence algorithm for Korean herbal prescriptions in the future.

Comparison and analysis of artificial summary and statistical algorithm of document (문서의 인위적 요약과 통계적 알고리즘의 비교 및 분석)

  • 김유식;유준현;박순철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1255-1258
    • /
    • 2003
  • Today with the sheep of information which is produced the variety is increasing geometrical progression. To recently the internet being supplied quickly, will reach and the computer users whom it uses increase and the documents which have become digital anger are increasing. From the dissertation which it sees directness it extracts a weight with possibility work and it uses it summarizes a statistics algorithm technique and a sentence. The summary literature course which the summary and the person due to a statistics algorithm summarize an agreement ratio it compares and it compares. And being more accurate like this statistical base summary method more little more, the good hit rate is high and it proposes the document summary algorithm method which is good.

  • PDF

Emotion Recognition by Vision System (비젼에 의한 감성인식)

  • 이상윤;오재흥;주영훈;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.203-207
    • /
    • 2001
  • In this Paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using CCD color image. To do this, we first acquire the color image from the CCD camera, and then propose the method for recognizing the expression to be represented the structural correlation of man's feature Points(eyebrows, eye, nose, mouse) It is central technology that the Process of extract, separate and recognize correct data in the image. for representation is expressed by structural corelation of human's feature Points In the Proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Had separated complexion area using color-difference of color space by method that have separated background and human's face toughly to change such as external illumination in this paper. For this, we propose an algorithm to extract four feature Points from the face image acquired by the color CCD camera and find normalization face picture and some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector. Finally, we show the Practical application possibility of the proposed method.

  • PDF

Facial Expression Recognition by Combining Adaboost and Neural Network Algorithms (에이다부스트와 신경망 조합을 이용한 표정인식)

  • Hong, Yong-Hee;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.806-813
    • /
    • 2010
  • Human facial expression shows human's emotion most exactly, so it can be used as the most efficient tool for delivering human's intention to computer. For fast and exact recognition of human's facial expression on a 2D image, this paper proposes a new method which integrates an Discrete Adaboost classification algorithm and a neural network based recognition algorithm. In the first step, Adaboost algorithm finds the position and size of a face in the input image. Second, input detected face image into 5 Adaboost strong classifiers which have been trained for each facial expressions. Finally, neural network based recognition algorithm which has been trained with the outputs of Adaboost strong classifiers determines final facial expression result. The proposed algorithm guarantees the realtime and enhanced accuracy by utilizing fastness and accuracy of Adaboost classification algorithm and reliability of neural network based recognition algorithm. In this paper, the proposed algorithm recognizes five facial expressions such as neutral, happiness, sadness, anger and surprise and achieves 86~95% of accuracy depending on the expression types in real time.

Design of DOI Detector Module for PET through the Light Spread Distribution (빛 분포를 통한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.637-643
    • /
    • 2018
  • A depth of interaction(DOI) detector module using a block scintillator and a pixellated scintillator was designed, and layer discrimination ability was calculated using DETECT2000. The block scintillator was used to improve the sensitivity and the spatial resolution was improved by measuring the DOI. The DOI was measured by analyzing the signal characteristics of each channel of the changed distribution of light. The detector module was composed to the block scintillator in the top layer and the pixellated scintillator in the bottom layer, which changes the distribution of light generated from a scintillator interacting with a gamma ray. In the flood image, the top layer was able to acquire the image at the position similar to the position of the bottom layer because the bottom layer consist of the pixellated scintillator. By using the Anger algorithm, the 16 channel signal was reduced to 4 channels to facilitate the analysis of the signal characteristics. The layer discrimination was measured using a simple algorithm and the accuracy was about 84% for each layer. When this detector module is used in preclinical PET, the spatial resolution at the outside of the field of view can be improved by measuring the DOI.

Relationship between emotions and emoticons in adolescents in digital communication environment (디지털 커뮤니케이션 환경에서 청소년들의 감정과 이모티콘의 관계)

  • Kim, Yoon-Ji;Kang, Dongmug;Kim, Ju-Young;Kim, Jong-Eun
    • Health Communication
    • /
    • v.12 no.1
    • /
    • pp.51-72
    • /
    • 2017
  • Purpose: Adolescents use emoticons to express their emotions in an online environment. Hence, medical experts can understand the emotions of adolescents by emoticons. The goal of this study was to investigate the relationship between various emotions and emoticons among the Korean adolescents. Methods: The questionnaire survey was conducted between September 1 and 30, 2014, involving 3,272 students in elementary schools, middle schools, and high schools affiliated in the Department of Education of the metropolitan city of Busan. A total of 1,717 students responded to the survey. The participants consisted of 806 males (46.9%), and 911 females (53.1%). Among these, there were 557 elementary school students (32.4%), 617 middle school students (35.9%), and 543 high school students (31.6%). A social networking analysis was conducted using NodeXL. Results: The frequency of emoticon use among adolescents runs in the order of joy, sadness, fear, surprise, anger, disgust, and then depression. Elementary school females mainly use emoticons to express joy; middle school females use emoticons to express sadness, surprise, anger, disgust, and depression; and high school females use emoticons to express fear. Age- and gender-specific emoticon networks were visualized by using the Haren-Korel fast multiscale algorithm. Commonly used emoticons by age and gender were expressed in the networks. Results of age- and gender-specific emoticon networks visualization show similar results of centrality of seven emoticons. Conclusion: In the digital communication environment, emoticons could be used to catch the emotions of adolescents in Korea.

Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences (이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

Face Recognition using Emotional Face Images and Fuzzy Fisherface (감정이 있는 얼굴영상과 퍼지 Fisherface를 이용한 얼굴인식)

  • Koh, Hyun-Joo;Chun, Myung-Geun;Paliwal, K.K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.94-98
    • /
    • 2009
  • In this paper, we deal with a face recognition method for the emotional face images. Since the face recognition is one of the most natural and straightforward biometric methods, there have been various research works. However, most of them are focused on the expressionless face images and have had a very difficult problem if we consider the facial expression. In real situations, however, it is required to consider the emotional face images. Here, three basic human emotions such as happiness, sadness, and anger are investigated for the face recognition. And, this situation requires a robust face recognition algorithm then we use a fuzzy Fisher's Linear Discriminant (FLD) algorithm with the wavelet transform. The fuzzy Fisherface is a statistical method that maximizes the ratio of between-scatter matrix and within-scatter matrix and also handles the fuzzy class information. The experimental results obtained for the CBNU face databases reveal that the approach presented in this paper yields better recognition performance in comparison with the results obtained by other recognition methods.