• Title/Summary/Keyword: Angelica polysaccharide

Search Result 18, Processing Time 0.026 seconds

Optimal Conditions for the Production of Immunostimulating Polysaccharides from the Suspension Culture of Angelica gigas Cells. (면역증강성 다당 생산을 위한 참당귀 세포배양의 최적조건)

  • 안경섭;서원택;심웅섭;김익환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.130-136
    • /
    • 1998
  • An Immunostimulating polysaccharide was produced from the suspension culture of Angelica gigas H4, plant cells. In order to enhance the polysaccharide production by the A. gigas cell culture, medium composition and physical conditions were optimized. Schenk and Hildebrandt (SH) medium was selected as an optimal basal medium for the growth of A. gigas. The maximum cell and polysaccharide concentration obtained in SH medium were 15.8 g DCW/l and 0.85 g polysaccharide/l, respectively, at $25^{\circ}C$ under dark condition. For the enhanced polysaccharide production, a polysaccharide production medium (PPM) was established by modifying Gamborg B5 medium with optimized carbon sources, growth regulators, organic and inorganic elements. Optimal initial pH and temperature were 6.0-6.6 and $20^{\circ}C$, respectively, and the dark condition was better than the light condition. The maximum polysaccharide concentration of 1.5 g/l could be obtained through the optimization of the medium composition and physical conditions.

  • PDF

Macrophage Activation by an Acidic Polysaccharide Isolated from Angelica Sinensis (Oliv.) Diels

  • Yang, Xingbin;Zhao, Yan;Wang, Haifang;Mei, Qibing
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.636-643
    • /
    • 2007
  • This study was designed to identify and characterize the mechanism of macrophage activation by AAP, an acidic polysaccharide fraction isolated from the roots of Angelica sinensis (Oliv.) Diels. As a result, AAP significantly enhanced nitric oxide (NO) production and cellular lysosomal enzyme activity in murine peritoneal macrophages in vitro and in vivo. Furthermore, L-NAME, a specific inhibitor of inducible nitric oxide synthase (iNOS), effectively suppressed AAP-induced NO generation in macrophages, indicating that AAP stimulated macrophages to produce NO through the induction of iNOS gene expression and the result was further confirmed by the experiment of the increase of AAP-induced iNOS transcription in a dose-dependent manner. To further investigate, AAP was shown to strongly augment toll-like receptor 4 (TLR4) mRNA expression and the pretreatment of macrophages with anti-TLR4 antibody significantly blocked AAP-induced NO release and the increase of iNOS activity, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) secretion.

Production of Immunostimulating Polysaccharide in Angelica gigas Nakai SusDension Cell Cultures (참당귀 현탁세포배양에 의한 면역증강성 다당 생산)

  • Kim, Young-Hwa;Kim, Ik-Hwan;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.331-335
    • /
    • 2006
  • Suspension cells of Angelica gigas Nakai were cultivated to produce extracellular polysaccharide(ECP) as immunostimulating agents. Effects of environmental conditions such as sucrose and 2,4-dichlorophenoxyacetic acid(2,4-D) concentrations on the growth and production of ECP were studied using suspension cultures of A. gigas Nakai. Final dry cell weight was increased with an increase of initial sucrose concentration from 30 to 60 g/L. The maximum production of ECP(1.2 g/L) was achieved at an initial sucrose concentration of 50 g/L on day 8. High 2,4-D concentration was effective for ECP production but not for cell growth. In addition, various fungal elicitors were investigated for the enhanced production of ECP in A. gigas suspension cultures. Among the tested fungal elicitors, Verticillium dahliae was the most effective for the production of ECP in A. gigas suspension culture.

Effect of Polysaccharide Elicitors on the Production of Decursinol Angelate in Agelica gigas Nakai Root Cultures

  • Cho, Ji-Suk;Kim, Ji-Yeon;Kim, Ik-Hwan;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.158-161
    • /
    • 2003
  • Root cultures of Angelica gigas Nakai were found to be sensitive to elicitation by poly-saccharide elicitors, such as methyl-$\beta$-cyclodextrin, glucan, carboxymethyl-$\beta$-chitin, chitosan, yeast extract and pectin. For the production of decursinol angelate, ca rboxymethyl-$\beta$-chitin and glucan were found to be the most efficient elicitors. The e nhanced accumulation of decursinol angelate was proportional to the increase of the phenylalanine ammonialyase (PAL) activity after the treatment with most of the elicitors. However, carboxymethyl-$\beta$-chitin treatment did not stimulate the PAL activity, despite the 1.6-fold increase in the decursinol angelate production.

Production of Extracellular Polysaccharide by Perfusion Culture of Angelica gigas Nakai Suspension Cells (배지교환식 고농도 배양에 의한 참당귀 현탁세포 유래 ECP 생산)

  • Kim, Young-Hwa;Kim, Ik-Hwan;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.336-340
    • /
    • 2006
  • High-density perfusion cultivation was performed to produce extracellular polysaccharide(ECP) as immunostimulating agents in suspension cell cultures of Angelica gigas Nakai. In batch culture, the maximum cell density was 16.8 gDCW/L at day 6 and 0.9 g/L of ECP was obtained at day 8. When the medium exchange was started at the fifth day after inoculation for the perfusion culture, high concentration of the cells at 23.8 gDCW/L could be achieved with continuous production of ECP. Treatments of ultrasound and Pluronic F-68 were found to be helpful for the secretion of intracellular ECP into the culture medium.

Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells

  • Wang, Lu;Jiang, Rong;Song, Shu-Dan;Hua, Zi-Sen;Wang, Jian-Wei;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3715-3721
    • /
    • 2015
  • Leukemia is a clonal disorder with blocked normal differentiation and cell death of hematopoietic progenitor cells. Traditional modalities with most used radiation and chemotherapy are nonspecific and toxic which cause adverse effects on normal cells. Differentiation inducing therapy forcing malignant cells to undergo terminal differentiation has been proven to be a promising strategy. However, there is still scarce of potent differentiation inducing agents. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), has potential differentiation inducing activity in human chronic erythro-megakaryoblastic leukemia K562 cells. MTT assays and flow cytometric analysis demonstrated that ASP inhibited K562 cell proliferation and arrested the cell cycle at the G0/G1 phase. ASP also triggered K562 cells to undergo erythroid differentiaton as revealed by morphological changes, intensive benzidine staining and hemoglobin colorimetric reaction, as well as increased expression of glycophorin A (GPA) protein. ASP induced redistribution of STAT5 protein from the cytoplasm to the nucleus. Western blotting analysis further identified that ASP markedly sensitized K562 cells to exogenous erythropoietin (EPO) by activating EPO-induced JAK2/STAT5 tyrosine phosphorylation, thus augmenting the EPO-mediated JAK2/STAT5 signaling pathway. On the basis of these findings, we propose that ASP might be developed as a potential candidate for chronic myelogenous leukemia inducing differentiation treatment.

Senescence Effects of Angelica sinensis Polysaccharides on Human Acute Myelogenous Leukemia Stem and Progenitor Cells

  • Liu, Jun;Xu, Chun-Yan;Cai, Shi-Zhong;Zhou, Yue;Li, Jing;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6549-6556
    • /
    • 2013
  • Leukemia stem cells (LSCs) play important roles in leukemia initiation, progression and relapse, and thus represent a critical target for therapeutic intervention. Hence, it is extremely urgent to explore new therapeutic strategies directly targeting LSCs for acute myelogenous leukemia (AML) therapy. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), effectively inhibited human AML $CD34^+CD38^-$ cell proliferation in vitro culture in a dose-dependent manner while sparing normal hematopoietic stem and progenitor cells at physiologically achievable concentrations. Furthermore, ASP exerted cytotoxic effects on AML K562 cells, especially LSC-enriched $CD34^+CD38^-$ cells. Colony formation assays further showed that ASP significantly suppressed the formation of colonies derived from AML $CD34^+CD38^-$ cells but not those from normal $CD34^+CD38^-$ cells. Examination of the underlying mechanisms revealed that ASP induced $CD34^+CD38^-$ cell senescence, which was strongly associated with a series of characteristic events, including up-regulation of p53, p16, p21, and Rb genes and changes of related cell cycle regulation proteins P16, P21, cyclin E and CDK4, telomere end attrition as well as repression of telomerase activity. On the basis of these findings, we propose that ASP represents a potentially important agent for leukemia stem cell-targeted therapy.

The Effect of Polysaccharide from Angelica Gigas Nakai on Controlling the Differentiation of Human Embryonic Stem Cells

  • Park, Young-S.;Lee, Jae-E.;Lee, Seo-H.;Lee, Hyeon-Y.
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2002
  • It was found that the purified extract from A. gigas Nakai (polysaccharide, M.W., 25 kD) controled differentiating human ES cells. Its optimal supplementation concentration was decided as 0.8 $({\mu}g/ml)$ to efficiently control the differentiation. It also enhanced the cell growth, compared to the control. However, most widely used and commercially available differentiating agent, Leukemia Inhibitory Factor (LIF) negatively affected on the cell growth even though it controls the differentiation of ES cells, down to 40-50 % based on morphological observation and telomerase activity. It was presumed that the extract first affected on cell membrane and resulted in controlling signal system, then amplify gene expression of telomere, which enhanced the telomerase activity up to three times compared to the control. LIF only increased the enzyme activity up to two times. It was confirmed that the extract from A. gigas Nakai could be used for substituting currently used differentiation controlling agent, LIF from animal resources as a cheap plant resource and not affecting the cell growth. It can broaden the application of the plants not only to functional foods and their substitutes but also to fine chemicals and most cutting-edge biopharmaceutical medicine.

Roles of sugar chains in immunostimulatory activity of the polysaccharide isolated from Angelica gigas (참당귀에서 분리한 다당의 면역활성에 대한 당쇄의 역할)

  • Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.336-342
    • /
    • 2019
  • To elucidate structure-function relationship of polysaccharide from Angelica gigas, the AGE-2c-I was purified by two successive chromatography steps. AGE-2c-I showed a potent anti-complementary activity in a dose-dependent manner. AGE-2c-I with a molecular weight of 140 kDa comprised four monosaccharides and 13 glycosyl linkages, and strongly reacted with ${\beta}$-glucosyl Yariv reagent. For the fine structure analysis of AGE-2c-I, it was sequentially digested by exo-arabinofuranosidase and endo-galactanase. The results indicated that AGE-2c-I was a typical RG-I polysaccharide with side chains such as highly branched ${\alpha}$-arabinan, ${\beta}$-($1{\rightarrow}4$)-galactan and arabino-${\beta}$-3,6-galactan. To characterize the active moiety of AGE-2c-I, the anti-complementary activities of AGE-2c-I and its subfractions were assayed. It was observed that the anti-complementary activity of AGE-2c-I was due to the entire structure that resembled RG-I. In addition, arabino-${\beta}$-3,6-galactan side chain (GN-I) in AGE-2c-I probably plays a crucial role in the anti-complementary activity, whereas ${\alpha}$-arabinan side chain (AFN-I) consisting of 5-linked Araf and 3,5-branched Araf partially contributes to the activity.