• Title/Summary/Keyword: Android malware analysis

Search Result 47, Processing Time 0.032 seconds

Relationship Analysis between Malware and Sybil for Android Apps Recommender System (안드로이드 앱 추천 시스템을 위한 Sybil공격과 Malware의 관계 분석)

  • Oh, Hayoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1235-1241
    • /
    • 2016
  • Personalized App recommendation system is recently famous since the number of various apps that can be used in smart phones that increases exponentially. However, the site users using google play site with malwares have experienced severe damages of privacy exposure and extortion as well as a simple damage of satisfaction descent at the same time. In addition, Sybil attack (Sybil) manipulating the score (rating) of each app with falmay also present because of the social networks development. Up until now, the sybil detection studies and malicious apps studies have been conducted independently. But it is important to determine finally the existence of intelligent attack with Sybil and malware simultaneously when we consider the intelligent attack types in real-time. Therefore, in this paper we experimentally evaluate the relationship between malware and sybils based on real cralwed dataset of goodlplay. Through the extensive evaluations, the correlation between malware and sybils is low for malware providers to hide themselves from Anti-Virus (AV).

Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform (안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류)

  • Kim, Dong-Wook;Na, Kyung-Gi;Han, Myung-Mook;Kim, Mijoo;Go, Woong;Park, Jun Hyung
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • This paper is a study to classify malicious applications in Android environment. And studying the threat and behavioral analysis of malicious Android applications. In addition, malicious apps classified by machine learning were performed as experiments. Android behavior analysis can use dynamic analysis tools. Through this tool, API Calls, Runtime Log, System Resource, and Network information for the application can be extracted. We redefined the properties extracted for machine learning and evaluated the results of machine learning classification by verifying between the overall features and the main features. The results show that key features have been improved by 1~4% over the full feature set. Especially, SVM classifier improved by 10%. From these results, we found that the application of the key features as a key feature was more effective in the performance of the classification algorithm than in the use of the overall features. It was also identified as important to select meaningful features from the data sets.

Forgotten Permission Usages: An Empirical Study on App Description Based Android App Analysis

  • Wu, Zhiqiang;Lee, Scott Uk-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.107-113
    • /
    • 2021
  • In this paper, we conducted an empirical study to investigate whether Android app descriptions provide enough permission usages for measuring app quality in terms of human writing and consistency between code and descriptions. Android app descriptions are analyzed for various purposes such as quality measurement, functionality recommendation, and malware detection. However, many app descriptions do not disclose permission usages, whether accidentally or on purpose. Most importantly, the previous studies could not precisely analyze app descriptions if permission usages cannot be completely introduced in app descriptions. To assess the consistency between permissions and app descriptions, we implemented a state-of-the-art method to predict Android permissions for 29,270 app descriptions. As a result, 25% of app descriptions may not contain any permission semantic, and 57% of app descriptions cannot accurately reflect permission usages.

Efficient Detection of Android Mutant Malwares Using the DEX file (DEX 파일을 이용한 효율적인 안드로이드 변종 악성코드 탐지 기술)

  • Park, Dong-Hyeok;Myeong, Eui-Jung;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.895-902
    • /
    • 2016
  • Smart phone distribution rate has been rising and it's security threat also has been rising. Especially Android smart phone reaches nearly 85% of domestic share. Since repackaging on android smart phone is relatively easy, the number of re-packaged malwares has shown steady increase. While many detection techniques have been proposed in order to prevent malwares, it is not easy to detect re-packaged malwares by static analysis and it is also difficult to operate dynamic analysis in android smart phone. Static analysis proposed in this paper features code reuse of repackaged malwares. We extracted DEX files from android applications and performed static analysis using class names and method names. This process doesn't not include reverse engineering, so it is possible to detect malwares efficiently.

A Static Analysis Technique for Android Apps Written with Xamarin (자마린으로 개발된 안드로이드 앱의 정적 분석 연구)

  • Lim, Kyeong-hwan;Kim, Gyu-sik;Shim, Jae-woo;Cho, Seong-je
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.643-653
    • /
    • 2018
  • Xamarin is a representative cross-platform development framework that allows developers to write mobile apps in C# for multiple mobile platforms, such as Android, iOS, or Windows Phone. Using Xamarin, mobile app developers can reuse existing C# code and share significant code across multiple platforms, reducing development time and maintenance costs. Meanwhile, malware authors can also use Xamarin to spread malicious apps on more platforms, minimizing the time and cost of malicious app creation. In order to cope with this problem, it is necessary to analyze and detect malware written with Xamarin. However, little studies have been conducted on static analysis methods of the apps written in Xamarin. In this paper, we examine the structure of Android apps written with Xamarin and propose a static analysis technique for the apps. We also demonstrate how to statically reverse-engineer apps that have been transformed using code obfuscation. Because the Android apps written with Xamarin consists of Java bytecode, C# based DLL libraries, and C/C++ based native libraries, we have studied static reverse engineering techniques for these different types of code.

Performance Enhancement of Android Malware Classification using PCA (주성분 분석을 활용한 안드로이드 악성코드 분류 성능 향상 방안)

  • Jeon, Dong-Ha;Lee, Soo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.249-250
    • /
    • 2022
  • 최근 API Call을 기반으로 하는 악성코드 탐지 및 분류에 대한 연구가 활발히 진행되고 있다. 그러나 API Call 기반의 데이터는 방대한 양과 다양한 차원의 특성으로 인해 분석과 학습 모델 구축 측면에서 비효율적인 한계가 있다. 이에 본 연구에서는 방대한 API Call 정보를 포함하고 있는 CICAndMal2020 데이터 세트를 대상으로 기존의 특성 선택 기법이 아닌 주성분 분석(Principal Component Analysis)을 사용하여 차원을 대폭 축소 시킨 후 머신러닝 기법을 적용하여 분류를 시도하였다. 실험 결과 전체 9,503개의 특성을 25개의 주성분(전체 대비 약 0.26% 수준)으로 축소시키고 다중 분류 기준 약 84%의 정확도를 나타냈다. 결과적으로 기존 연구에서의 탐지 모델 대비 정확도, F1-score 등의 성능 향상은 물론 차원 축소 측면에서 매우 향상된 결과를 달성하였다.

  • PDF

Normal and Malicious Application Pattern Analysis using System Call Event on Android Mobile Devices for Similarity Extraction (안드로이드 모바일 정상 및 악성 앱 시스템 콜 이벤트 패턴 분석을 통한 유사도 추출 기법)

  • Ham, You Joung;Lee, Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.125-139
    • /
    • 2013
  • Distribution of malicious applications developed by attackers is increasing along with general normal applications due to the openness of the Android-based open market. Mechanism that allows more accurate ways to distinguish normal apps and malicious apps for common mobile devices should be developed in order to reduce the damage caused by the rampant malicious applications. This paper analysed the normal event pattern from the most highly used game apps in the Android open market to analyse the event pattern from normal apps and malicious apps of mobile devices that are based on the Android platform, and analysed the malicious event pattern from the malicious apps and the disguising malicious apps in the form of a game app among 1260 malware samples distributed by Android MalGenome Project. As described, experiment that extracts normal app and malicious app events was performed using Strace, the Linux-based system call extraction tool, targeting normal apps and malicious apps on Android-based mobile devices. Relevance analysis for each event set was performed on collected events that occurred when normal apps and malicious apps were running. This paper successfully extracted event similarity through this process of analyzing the event occurrence characteristics, pattern and distribution on each set of normal apps and malicious apps, and lastly suggested a mechanism that determines whether any given app is malicious.

Android Botnet Detection Using Hybrid Analysis

  • Mamoona Arhsad;Ahmad Karim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.704-719
    • /
    • 2024
  • Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.

A Study on Deobfuscation Method of Android and Implementation of Automatic Analysis Tool (APK에 적용된 난독화 기법 역난독화 방안 연구 및 자동화 분석 도구 구현)

  • Lee, Se Young;Park, Jin Hyung;Park, Moon Chan;Suk, Jae Hyuk;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1201-1215
    • /
    • 2015
  • Obfuscation tools can be used to protect android applications from reverse-engineering in android environment. However, obfuscation tools can also be misused to protect malicious applications. In order to evade detection of anti-virus, malware authors often apply obfuscation techniques to malicious applications. It is difficult to analyze the functionality of obfuscated malicious applications until it is deobfuscated. Therefore, a study on deobfuscation is certainly required to address the obfuscated malicious applications. In this paper, we analyze APKs which are obfuscated by commercial obfuscation tools and propose the deobfuscation method that can statically identify obfuscation options and deobfuscate it. Finally, we implement automatic identification and deobfuscation tool, then show the results of evaluation.

Trend Analysis of Malwares in Social Information Based Android Market (소셜 기반 안드로이드 마켓에서 악성 앱 경향성 분석)

  • Oh, Hayoung;Goo, EunHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1491-1498
    • /
    • 2017
  • As the use of smartphones and the launch of various apps have increased rapidly, the number of malicious apps has also increased, and the damage is continuing. The Google Market where Android apps are registered is inevitably present at the same time as normal apps and malicious apps even though there are regulations for app registration. Especially, as social networks are activated, users are connected with social networks, and the ratings, downloads and awareness information are reflected in the number of downloaded apps. As a result, when users choose their apps by simply reflecting ratings, popularity, popular comments, and highly-categorized apps, malicious app downloads can sometimes cause significant harm. Therefore, this study first analyzed the tendency of malicious apps by directly crawling and analyzing long-term social information in the currently active Android market.